Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499153

RESUMO

AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Amiloide/metabolismo , Amiloide/química , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Simulação de Dinâmica Molecular , Regiões Constantes de Imunoglobulina/metabolismo , Regiões Constantes de Imunoglobulina/genética , Regiões Constantes de Imunoglobulina/química , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Cinética , Domínios Proteicos
2.
J Pathol ; 255(3): 311-318, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34331462

RESUMO

Apolipoprotein A-IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA-IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA-IV signal sequence residues (p.18-43 to p.20-43) in 16/24 trypsin-digested amyloid deposits but in only 1/266 non-ApoA-IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA-IV amyloid was first described, and in plasma from a single cardiac ApoA-IV amyloidosis patient. The most common signal-containing peptide observed in ApoA-IV amyloid, p.20-43, and to a far lesser extent the N-terminal peptide, p.21-43, were fibrillogenic in vitro at physiological pH, generating Congo red-positive fibrils. The addition of a single signal-derived alanine residue to the N-terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA-IV-associated pathologies. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Amiloidose/patologia , Apolipoproteínas A , Sinais Direcionadores de Proteínas , Idoso , Feminino , Humanos , Masculino , Placa Amiloide/patologia
3.
J Biol Chem ; 295(29): 10008-10022, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32499371

RESUMO

Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16-18 nm Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvß3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvß3 integrin.


Assuntos
Proteínas de Transporte de Cátions/química , Staphylococcus aureus/química , Vitronectina/química , Proteínas de Transporte de Cátions/metabolismo , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Ligação Proteica , Staphylococcus aureus/metabolismo , Vitronectina/metabolismo
4.
J Biol Chem ; 295(33): 11379-11387, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571879

RESUMO

Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro either using the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were -12.36, -8.10, and -10.61 kcal mol-1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods of structural comparison between ex vivo fibrils and fibrils generated in vitro Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology.


Assuntos
Neuropatias Amiloides Familiares/patologia , Amiloide/química , Pré-Albumina/química , Amiloide/genética , Amiloide/ultraestrutura , Neuropatias Amiloides Familiares/genética , Humanos , Mutação , Pré-Albumina/genética , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Estabilidade Proteica , Termodinâmica
5.
Phys Chem Chem Phys ; 22(29): 17007, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672261

RESUMO

Correction for 'Exploring exchange processes in proteins by paramagnetic perturbation of NMR spectra' by Yamanappa Hunashal et al., Phys. Chem. Chem. Phys., 2020, 22, 6247-6259, DOI: .

6.
Phys Chem Chem Phys ; 22(11): 6247-6259, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32129386

RESUMO

The effect of extrinsic paramagnetic probes on NMR relaxation rates for surface mapping of proteins and other biopolymers is a widely investigated and powerful NMR technique. Here we describe a new application of those probes. It relies on the setting of the relaxation delay to generate magnetization equilibrium and off-equilibrium conditions, in order to tailor the extent of steady state signal recovery with and without the water-soluble nitroxide Tempol. With this approach it is possible to identify signals whose relaxation is affected by exchange processes and, from the relative assignments, to map the protein residues involved in association or conformational interconversion processes on a micro-to-millisecond time scale. This finding is confirmed by the comparison with the results obtained from relaxation dispersion measurements. This simple and convenient method allows preliminary inspection to highlight regions where structural or chemical exchange events are operative, in order to focus on quantitative subsequent determinations by transverse relaxation dispersion experiments or analogous NMR relaxation studies, and/or to gain insights into the predictions of calculations.


Assuntos
Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Magnetismo , Conformação Proteica
7.
Molecules ; 25(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171781

RESUMO

BACKGROUND: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, ß2-microglobulin (ß2m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit ß2m fibril formation in vitro. METHODS: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on ß2m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. RESULTS: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of ß2m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. CONCLUSIONS: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/química , Proteínas/química , Microglobulina beta-2/química , Amiloide/química , Óxidos N-Cíclicos/farmacologia , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Domínios Proteicos , Mapeamento de Interação de Proteínas , Espectrofotometria , Marcadores de Spin
8.
J Biol Chem ; 293(37): 14192-14199, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30018138

RESUMO

Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation.


Assuntos
Amiloidose/metabolismo , Plasminogênio/metabolismo , Pré-Albumina/metabolismo , Amiloide/metabolismo , Bases de Dados de Proteínas , Fibrinolisina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Desnaturação Proteica , Dobramento de Proteína , Proteólise , Tripsina/metabolismo
9.
J Biol Chem ; 291(18): 9678-89, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26921323

RESUMO

The amyloidogenic variant of ß2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type ß2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type ß2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of ß2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N ß2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N ß2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N ß2-microglobulin fibrils.


Assuntos
Amiloide/química , Mutação de Sentido Incorreto , Agregação Patológica de Proteínas , Microglobulina beta-2/química , Substituição de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Cristalinas/química , Cristalinas/genética , Cristalinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(4): 1539-44, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474780

RESUMO

The Ser52Pro variant of transthyretin (TTR) produces aggressive, highly penetrant, autosomal-dominant systemic amyloidosis in persons heterozygous for the causative mutation. Together with a minor quantity of full-length wild-type and variant TTR, the main component of the ex vivo fibrils was the residue 49-127 fragment of the TTR variant, the portion of the TTR sequence that previously has been reported to be the principal constituent of type A, cardiac amyloid fibrils formed from wild-type TTR and other TTR variants [Bergstrom J, et al. (2005) J Pathol 206(2):224-232]. This specific truncation of Ser52Pro TTR was generated readily in vitro by limited proteolysis. In physiological conditions and under agitation the residue 49-127 proteolytic fragment rapidly and completely self-aggregates into typical amyloid fibrils. The remarkable susceptibility to such cleavage is likely caused by localized destabilization of the ß-turn linking strands C and D caused by loss of the wild-type hydrogen-bonding network between the side chains of residues Ser52, Glu54, Ser50, and a water molecule, as revealed by the high-resolution crystallographic structure of Ser52Pro TTR. We thus provide a structural basis for the recently hypothesized, crucial pathogenic role of proteolytic cleavage in TTR amyloid fibrillogenesis. Binding of the natural ligands thyroxine or retinol-binding protein (RBP) by Ser52Pro variant TTR stabilizes the native tetrameric assembly, but neither protected the variant from proteolysis. However, binding of RBP, but not thyroxine, inhibited subsequent fibrillogenesis.


Assuntos
Amiloide/metabolismo , Pré-Albumina/metabolismo , Prolina/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Amiloidose/genética , Amiloidose/patologia , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Conformação Molecular , Dados de Sequência Molecular , Fenótipo , Pré-Albumina/química , Pré-Albumina/genética , Proteólise
11.
J Biol Chem ; 289(6): 3318-27, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24338476

RESUMO

To form extracellular aggregates, amyloidogenic proteins bypass the intracellular quality control, which normally targets unfolded/aggregated polypeptides. Human D76N ß2-microglobulin (ß2m) variant is the prototype of unstable and amyloidogenic protein that forms abundant extracellular fibrillar deposits. Here we focus on the role of the class I major histocompatibility complex (MHCI) in the intracellular stabilization of D76N ß2m. Using biophysical and structural approaches, we show that the MHCI containing D76N ß2m (MHCI76) displays stability, dissociation patterns, and crystal structure comparable with those of the MHCI with wild type ß2m. Conversely, limited proteolysis experiments show a reduced protease susceptibility for D76N ß2m within the MHCI76 as compared with the free variant, suggesting that the MHCI has a chaperone-like activity in preventing D76N ß2m degradation within the cell. Accordingly, D76N ß2m is normally assembled in the MHCI and circulates as free plasma species in a transgenic mouse model.


Assuntos
Amiloide/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Mutação de Sentido Incorreto , Microglobulina beta-2/metabolismo , Substituição de Aminoácidos , Amiloide/genética , Animais , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Camundongos Transgênicos , Microglobulina beta-2/genética
12.
Protein Sci ; 33(3): e4931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380705

RESUMO

The mechanism that converts native human transthyretin into amyloid fibrils in vivo is still a debated and controversial issue. Commonly, non-physiological conditions of pH, temperature, or organic solvents are used in in vitro models of fibrillogenesis of globular proteins. Transthyretin amyloid formation can be achieved under physiological conditions through a mechano-enzymatic mechanism involving specific serine proteases such as trypsin or plasmin. Here, we investigate S52P and L111M transthyretin variants, both causing a severe form of systemic amyloidosis mostly targeting the heart at a relatively young age with heterogeneous phenotype among patients. Our studies on thermodynamics show that both proteins are significantly less stable than other amyloidogenic variants. However, despite a similar thermodynamic stability, L111M variant seems to have enhanced susceptibility to cleavage and a lower tendency to form fibrils than S52P in the presence of specific proteases and biomechanical forces. Heparin strongly enhances the fibrillogenic capacity of L111M transthyretin, but has no effect on the S52P variant. Fibrillar seeds similarly affect the fibrillogenesis of both proteins, with a stronger effect on the L111M variant. According to our model of mechano-enzymatic fibrillogenesis, both full-length and truncated monomers, released after the first cleavage, can enter into fibrillogenesis or degradation pathways. Our findings show that the kinetics of the two processes can be affected by several factors, such as intrinsic amyloidogenicity due to the specific mutations, environmental factors including heparin and fibrillar seeds that significantly accelerate the fibrillogenic pathway.


Assuntos
Amiloidose , Glicosaminoglicanos , Humanos , Pré-Albumina/genética , Amiloidose/genética , Amiloidose/metabolismo , Amiloide/metabolismo , Heparina
13.
FASEB Bioadv ; 5(11): 484-505, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37936921

RESUMO

ß2-microglobulin (ß2-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N ß2-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans (C. elegans) strain expressing human WT ß2-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N ß2-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with ß2-m levels rather than with the presence of mutations, being more pronounced in WT ß2-m worms. ß2-m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT ß2-m at high concentration compared to D76N ß2-m worms. Altogether, these data show that ß2-m is a proteotoxic protein in vivo also in its wild-type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary ß2-m amyloidosis (high levels of non-mutated ß2-m vs. normal levels of variant ß2-m) and provide important clues on the molecular bases of these human diseases.

14.
Front Mol Biosci ; 9: 830006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237660

RESUMO

The globular to fibrillar transition of proteins represents a key pathogenic event in the development of amyloid diseases. Although systemic amyloidoses share the common characteristic of amyloid deposition in the extracellular matrix, they are clinically heterogeneous as the affected organs may vary. The observation that precursors of amyloid fibrils derived from circulating globular plasma proteins led to huge efforts in trying to elucidate the structural events determining the protein metamorphosis from their globular to fibrillar state. Whereas the process of metamorphosis has inspired poets and writers from Ovid to Kafka, protein metamorphism is a more recent concept. It is an ideal metaphor in biochemistry for studying the protein folding paradigm and investigating determinants of folding dynamics. Although we have learned how to transform both normal and pathogenic globular proteins into fibrillar polymers in vitro, the events occurring in vivo, are far more complex and yet to be explained. A major gap still exists between in vivo and in vitro models of fibrillogenesis as the biological complexity of the disease in living organisms cannot be reproduced at the same extent in the test tube. Reviewing the major scientific attempts to monitor the amyloidogenic metamorphosis of globular proteins in systems of increasing complexity, from cell culture to human tissues, may help to bridge the gap between the experimental models and the actual pathological events in patients.

15.
BMC Evol Biol ; 11: 159, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663612

RESUMO

BACKGROUND: We have recently discovered that the two tryptophans of human ß2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of ß2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI). We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of ß2-microglobulin with respect to these residues. RESULTS: Having defined the ß2-microglobulin protein family, we performed multiple sequence alignments and analysed the residue conservation in homologous proteins to generate a phylogenetic tree. Our results indicate that Trp60 is highly conserved, whereas some species have a Leu in position 95; the replacement of Trp95 with Leu destabilizes ß2-microglobulin by 1 kcal/mol and accelerates the kinetics of unfolding. Both thermodynamic and kinetic data fit with the crystallographic structure of the Trp95Leu variant, which shows how the hydrophobic cavity of the wild-type protein is completely occupied by Trp95, but is only half filled by Leu95. CONCLUSIONS: We have established that the functional Trp60 has been present within the sequence of ß2-microglobulin since the evolutionary appearance of proteins responsible for acquired immunity, whereas the structural Trp95 was selected and stabilized, most likely, for its capacity to fully occupy an internal cavity of the protein thereby creating a better stabilization of its folded state.


Assuntos
Filogenia , Triptofano/genética , Triptofano/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Sequência de Aminoácidos , Amiloide/metabolismo , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Triptofano/química , Microglobulina beta-2/química
16.
Biochim Biophys Acta Gen Subj ; 1864(1): 129453, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676294

RESUMO

BACKGROUND: L-Homocysteine (Hcy) is a non-proteinogenic α-amino acid synthesized from dietary methionine. In healthy humans, high Hcy levels are a risk factor for cardiovascular diseases, stroke and type 2 diabetes. A recent study reports that Hcy reacts with Cys10 of transthyretin (TTR), generating a stable covalent adduct. However, to date the effect of S-homocysteinylation on TTR conformational stability remains unknown. METHODS: The effect of Hcy on the conformational properties of wt- and L55P-TTR were analysed using a set of biophysical techniques. The cytotoxicity of S-homocysteinylated L55P-TTR was also evaluated in the HL-1 cardiomyocyte cell line, while the effects of the assemblies on kinematic and dynamics properties of cardiac muscle cells were analysed in cardiomyocyte syncytia. RESULTS: We found that Hcy stabilizes tetrameric wt-TTR, while it destabilizes the tetrameric structure of the L55P mutant, promoting the accumulation of self-assembly-prone monomeric species. CONCLUSIONS: Our study demonstrated that S-homocysteinylation of the L55P-TTR mutant impairs protein stability, favouring the appearance of toxic monomers. Interestingly, S-homocysteinylation affected only mutant, not wt-TTR. Moreover, we also show that assemblies of S-homocysteinylated L55P-TTR impair cardiomyocytes functional parameters. GENERAL SIGNIFICANCE: Our study offers new insights on the negative impact of S-homocysteinylation on L55P-TTR stability, whose aggregation is considered the causative agent of a form of early-onset familial amyloid polyneuropathy and cardiomyopathy. Our results suggest that high homocysteine levels are a further risk factor for TTR cardiomyopathy in patients harbouring the L55P-TTR mutation.


Assuntos
Neuropatias Amiloides Familiares/genética , Cardiomiopatias/genética , Homocisteína/genética , Pré-Albumina/química , Neuropatias Amiloides Familiares/patologia , Cardiomiopatias/patologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Homocisteína/química , Humanos , Metionina/química , Mutação/genética , Miócitos Cardíacos , Pré-Albumina/genética , Pré-Albumina/ultraestrutura , Conformação Proteica , Estabilidade Proteica , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Relação Estrutura-Atividade
17.
Mol Immunol ; 45(5): 1519-24, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17949814

RESUMO

Cold-precipitating monoclonal immunoglobulins can rarely aggregate in form of crystals (cryocrystalglobulins) and cause serious clinical manifestations. The structural basis underlying this phenomenon remains to be defined. This study was undertaken to provide the first characterization of the heavy (VH) and light chain (VL) variable regions of two human pathogenic cryocrystalglobulins. The immunoglobulins used different heavy and light chain constant regions and germline gene fragments, underwent high degrees of somatic hypermutation, and showed distributions of replacement and silent nucleotide changes suggestive of antigenic selection. Primary sequences analyses and computer-generated modeling identified a positive charge and the introduction of unusual hydrophobic residues in exposed areas of VH and VL. In particular, a rare replacement of a polar residue with proline is shared at the beginning of the VH complementarity-determining region 2, and this residue might be involved in intermolecular contacts.


Assuntos
Anticorpos Monoclonais/genética , Temperatura Baixa , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Cristalização , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/química , Região Variável de Imunoglobulina/química , Modelos Moleculares
18.
Sci Rep ; 9(1): 19960, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882874

RESUMO

The availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of ß2-microglobulin (D76N ß2-m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein. We have established a transgenic C. elegans line, expressing the human D76N ß2-m variant. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and the algorithm Paragon, we were able to detect growth and motility impairment in D76N ß2-m expressing worms. We also demonstrated the specificity of the ß2-m variant in determining the pathological phenotype by rescuing the wild type phenotype when ß2-m expression was inhibited by RNA interference (RNAi). Using this model, we have confirmed the efficacy of doxycycline, an inhibitor of the aggregation of amyloidogenic proteins, in rescuing the phenotype. In future, this C. elegans model, in conjunction with the INVAPP/Paragon system, offers the prospect of high-throughput chemical screening in the search for new drug candidates.


Assuntos
Amiloidose/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Microglobulina beta-2/genética , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Mutação de Sentido Incorreto , Fenótipo , Agregação Patológica de Proteínas/prevenção & controle , Dobramento de Proteína , Microglobulina beta-2/metabolismo
19.
Protein Sci ; 16(2): 343-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17242436

RESUMO

The lysine 58 cleaved and truncated variant of beta(2)-microglobulin (DeltaK58-beta2m) is conformationally unstable and present in the circulation of a large percentage of patients on chronic hemodialysis, suggesting that it could play a role in the beta2-microglobulin (beta2m) amyloid fibrillogenesis associated with dialysis-related amyloidosis (DRA). However, it has yet to be detected in the amyloid deposits of such patients. Here, we extracted amyloid fibrils, without denaturation or additional purification, from different amyloidotic tissues of two unrelated individuals suffering from DRA, and characterized them by high-sensitivity bidimensional gel electrophoresis (2D-PAGE), immunoblotting, MALDI time-of-flight mass spectrometry, and protein sequencing. To confirm whether or not this species could be identified by our proteomic approaches, we mapped its location in 2D-PAGE, in mixtures of pure DeltaK58-beta2m, and extracts of amyloid fibrils from patients, to a discrete region of the gel distinct from other isoforms of beta2m. Using this approach, the two known principal isoforms found in beta2m amyloid were identified, namely, the full-length protein and the truncated species lacking six N-terminal amino acid residues (DeltaN6-beta2m). In contrast, we found no evidence for the presence of DeltaK58-beta2m.


Assuntos
Amiloide/metabolismo , Amiloidose/metabolismo , Lisina/metabolismo , Diálise Renal , Microglobulina beta-2/metabolismo , Amiloide/química , Eletroforese em Gel Bidimensional , Humanos , Immunoblotting , Lisina/química , Microscopia de Força Atômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microglobulina beta-2/química
20.
Nanoscale ; 9(11): 3941-3951, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28265615

RESUMO

Nanoparticles have repeatedly been shown to enhance fibril formation when assayed with amyloidogenic proteins. Recently, however, evidence casting some doubt about the generality of this conclusion started to emerge. Therefore, to investigate further the influence of nanoparticles on the fibrillation process, we used a naturally occurring variant of the paradigmatic amyloidogenic protein ß2-microglobulin (ß2m), namely D76N ß2m where asparagine replaces aspartate at position 76. This variant is responsible for aggressive systemic amyloidosis. After characterizing the interaction of the variant with citrate-stabilized gold nanoparticles (Cit-AuNPs) by NMR and modeling, we analyzed the fibril formation by three different methods: thioflavin T fluorescence, native agarose gel electrophoresis and transmission electron microscopy. The NMR evidence indicated a fast-exchange interaction involving preferentially specific regions of the protein that proved, by subsequent modeling, to be consistent with a dimeric adduct interacting with Cit-AuNPs. The fibril detection assays showed that AuNPs are able to hamper D76N ß2m fibrillogenesis through an effective interaction that competes with protofibril formation or recruitment. These findings open promising perspectives for the optimization of the nanoparticle surface to design tunable interactions with proteins.


Assuntos
Ácido Cítrico , Ouro , Nanopartículas Metálicas , Microglobulina beta-2/química , Amiloide/química , Fluorescência , Simulação de Acoplamento Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA