Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 183(1): 108-18, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23764278

RESUMO

Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are environmental ubiquitous pollutants and associated with a growing health concern. Anecdotally, molar incisor hypomineralization (MIH) is increasing concurrently with EDC-related conditions, which has led us to investigate the effect of BPA on amelogenesis. Rats were exposed daily to BPA from conception until day 30 or 100. At day 30, BPA-affected enamel exhibited hypomineralization similar to human MIH. Scanning electron microscopy and elemental analysis revealed an abnormal accumulation of organic material in erupted enamel. BPA-affected enamel had an abnormal accumulation of exogenous albumin in the maturation stage. Quantitative real-time PCR, Western blotting, and luciferase reporter assays revealed increased expression of enamelin but decreased expression of kallikrein 4 (protease essential for removing enamel proteins) via transcriptional regulation. Data suggest that BPA exerts its effects on amelogenesis by disrupting normal protein removal from the enamel matrix. Interestingly, in 100-day-old rats, erupting incisor enamel was normal, suggesting amelogenesis is only sensitive to MIH-causing agents during a specific time window during development (as reported for human MIH). The present work documents the first experimental model that replicates MIH and presents BPA as a potential causative agent of MIH. Because human enamel defects are irreversible, MIH may provide an easily accessible marker for reporting early EDC exposure in humans.


Assuntos
Compostos Benzidrílicos/toxicidade , Hipoplasia do Esmalte Dentário/induzido quimicamente , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Amelogênese/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Western Blotting , Hipoplasia do Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Feminino , Humanos , Calicreínas/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
2.
Connect Tissue Res ; 55 Suppl 1: 43-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158179

RESUMO

There has been increasing concerns over last 20 years about the potential adverse effects of endocrine disruptors (EDs). Bisphenol A (BPA), genistein (G) and vinclozolin (V) are three widely used EDs having similar effects. Tooth enamel has recently been found to be an additional target of BPA that may be a causal agent of molar incisor hypomineralization (MIH). However, populations are exposed to many diverse EDs simultaneously. The purpose of this study was therefore to assess the effects of the combination of G, V and BPA on tooth enamel. Rats were exposed daily in utero and after birth to low doses of EDs mimicking human exposure during the critical fetal and suckling periods when amelogenesis takes place. The proportion of rats presenting opaque areas of enamel hypomineralization was higher when rats were treated with BPA alone than with a combination of EDs. The levels of mRNAs encoding the main enamel proteins varied with BPA treatment alone and did not differ significantly between controls and combined treatment groups. In vitro, rat ameloblastic HAT-7 cells were treated with the three EDs. BPA induced enamelin and reduced klk4 expression, G had no such effects and V reduced enamelin expression. These findings suggest that combinations of EDs may affect enamel less severely than BPA alone, and indicate that enamel hypomineralization may differ according to the characteristics of the ED exposure.


Assuntos
Amelogênese/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Esmalte Dentário/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Fenóis/farmacologia , Desmineralização do Dente/induzido quimicamente , Dente/efeitos dos fármacos , Animais , Proteínas do Esmalte Dentário/farmacologia , Ratos Wistar
3.
Endocrinology ; 155(9): 3365-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25004094

RESUMO

Bisphenol A (BPA) is a widespread endocrine disrupting chemical (EDC) strongly suspected to have adverse health effects. Numerous tissues and cells are affected by BPA, and we showed recently that BPA targets include ameloblasts and enamel. We therefore investigated the effects of BPA on ameloblasts and the possible involvement of the estrogen signaling pathway. Rats were exposed daily to low-dose BPA, and developed enamel hypomineralization similar to human molar incisor hypomineralization (MIH). BPA increased ameloblast proliferation in vivo and in vitro. The proliferation of the rat dental epithelial cell line HAT-7 was also increased by estrogen (E2). Ameloblasts express ERα but not ERß both in vivo and in vitro. The ER antagonist ICI 182,780 was used to inactivate ERα and abolished the effects of E2 on cell proliferation and transcription, but only partially reduced the effects of BPA. In conclusion, we show, for the first time, that: 1) BPA has ER-dependent and ER-independent effects on ameloblast proliferation and gene transcription; 2) the estrogen signaling pathway is involved in tooth development and the enamel mineralization process; and 3) BPA impacts preferentially amelogenesis in male rats. These results are consistent with the steroid hormones having effect on ameloblasts, raising the issues of the hormonal influence on amelogenesis and possible differences in enamel quality between sexes.


Assuntos
Ameloblastos/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Esmalte Dentário/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Estrogênios/farmacologia , Fenóis/farmacologia , Ameloblastos/citologia , Ameloblastos/metabolismo , Amelogênese/efeitos dos fármacos , Animais , Esmalte Dentário/citologia , Esmalte Dentário/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA