RESUMO
Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m-3), D4 (57 ng m-3), D5 (230 ng m-3), D6 (11 ng m-3), L5 (2.5 ng m-3), and L7 (1.3 ng m-3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.
Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Siloxanas , Cidade de Nova Iorque , Siloxanas/análise , Poluentes Atmosféricos/análise , Indústrias , Humanos , Volatilização , Estações do Ano , Cosméticos/análise , Compostos Orgânicos Voláteis/análiseRESUMO
Exposure to polychlorinated biphenyls (PCBs) remains a potential human health risk due to their persistence in the environment, despite a global ban on their production. Understanding the composition of PCB mixtures is essential for the application of a mixtures-based approach to assessing health risks of PCB exposure. This work represents the most extensive effort to date to compile and make publicly available the PCB congener profiles for mixtures with toxicological data, providing a foundation for understanding toxicological potency of PCB mixtures in the environment. We searched for published congener profiles across 29 commercial and simulated environmental PCB mixtures, including various Aroclors, Phenoclors, Clophens, and Kanechlors, among others. A total of 117 references containing 401 distinct complete or partial tabularized profiles were found. Aroclor 1254 had the most published profiles, with 79 unique datasets characterizing multiple mixture lots. In contrast, no congener-specific composition data were identified for Fenclors, Clophen C, or Pyralenes. Eighty-seven of the most complete and clearly reported profiles underwent a detailed extraction of the congener data, PCB mixture source, and analytical methods. Challenges encountered during data extraction included congener coelutions, incomplete methods reporting, and inconsistencies in PCB nomenclature. These factors complicate data visualization, comparisons across datasets, and use of the data in subsequent analyses. Where possible, we have converted profiles to the same units and congener numbering convention to allow for easier comparison. The extracted data are publicly available online as interactive visuals and as a downloadable Microsoft Excel® workbook. This dataset provides researchers with an overview of the current PCB mixture profile landscape that can serve as a tool to support efforts to minimize the health impacts of environmental PCB exposure, including the exploration of links between mixture composition and toxicity and the identification of the most efficient and effective remediation strategies at contaminated sites.
RESUMO
We hypothesized that emissions of polychlorinated biphenyls (PCBs) from Aroclor mixtures present in building materials explain their concentrations in school air. Here, we report a study of airborne concentrations and gas-phase emissions in three elementary school rooms constructed in 1958. We collected airborne PCBs using polyurethane foam passive air samplers (PUF-PAS, n = 6) and PCB emissions from building materials using polyurethane foam passive emission samplers (PUF-PES, n = 17) placed over flat surfaces in school rooms, including vinyl tile floors, carpets, painted bricks, painted drywall, and glass-block windows. We analyzed all 209 congeners represented in 173 chromatographic separations and found that the congener distribution in PUF-PES strongly resembled the predicted diffusive release of gas-phase PCBs from a solid material containing Aroclor 1254. Concentrations of airborne total PCBs ranged from 38 to 180 ng m-3, a range confirmed by an independent laboratory in the same school. These levels exceed action levels for all aged children set by the State of Vermont and exceed guidance levels set by the U.S. EPA for children under age 3. Emissions of PCBs from the glass-block windows (30,000 ng m-2 d-1) greatly exceeded those of all other surfaces, which ranged from 35 to 2700 ng m-2 d-1. This study illustrates the benefit of the direct measurement of PCB emissions to identify the most important building remediation needed to reduce airborne PCB concentrations in schools.
Assuntos
Bifenilos Policlorados , Criança , Humanos , Idoso , Pré-Escolar , Vermont , Arocloros , Instituições AcadêmicasRESUMO
Exposure to polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) has been implicated in neurodevelopmental disorders. However, the distribution of PCBs and OH-PCBs in the human brain has not been characterized. This study investigated the age-, sex-, and brain region-specific distribution of all 209 PCBs using gaschromatography-tandem mass spectrometry (GC-MS/MS) in neonatal (N = 7) and adult (N = 7) postmortem brain samples. OH-PCB analyses were performed by GC-MS/MS (as methylated derivatives) and, in a subset of samples, by nontarget liquid chromatography high-resolution mass spectrometry (Nt-LCMS). Fourteen higher chlorinated PCB congeners were observed with a detection frequency >50%. Six lower chlorinated PCBs were detected with a detection frequency >10%. Higher chlorinated PCBs were observed with higher levels in samples from adult versus younger donors. PCB congener profiles from adult donors showed more similarities across brain regions and donors than younger donors. We also assess the potential neurotoxicity of the PCB residues in the human brain with neurotoxic equivalency (NEQ) approaches. The median ΣNEQs, calculated for the PCB homologues, were 40-fold higher in older versus younger donors. Importantly, lower chlorinated PCBs made considerable contributions to the neurotoxic potential of PCB residues in some donors. OH-PCBs were identified for the first time in a small number of human brain samples by GC-MS/MS and Nt-LCMS analyses, and all contained four or fewer chlorine.
Assuntos
Bifenilos Policlorados , Adulto , Idoso , Encéfalo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Hidroxilação , Recém-Nascido , Bifenilos Policlorados/análise , Espectrometria de Massas em TandemRESUMO
Serum samples from 24 subjects (6 mother-daughter and 6 mother-son dyads) in a rural community (Columbus Junction, Iowa) and 24 subjects (6 mother-daughter and 6 mother-son dyads) in an urban community (East Chicago, Indiana) were analyzed for 74 sulfated metabolites of polychlorinated biphenyls (PCBs). We detected significantly higher mean concentrations of total assessed PCB sulfates in the urban group (110-8900 ng/g fresh weight of serum, mean = 3400 ng/g, standard error = 300) than in the rural cohort (530-6700 ng/g fresh weight of serum, mean = 1800 ng/g, standard error = 500). Eight PCB sulfate congeners (4-PCB 2 sulfate, 4'-PCB 2 sulfate, 2'-PCB 3 sulfate, 4'-PCB 3 sulfate, 4-PCB 11 sulfate, 4'-PCB 18 sulfate, 4'-PCB 25 sulfate, and 4-PCB 52 sulfate) contributed over 90% of the total assessed PCB sulfates in most individuals. The serum samples were enriched in PCB sulfates with fewer than 5 chlorine atoms, and this congener distribution differed from those of PCBs and hydroxylated PCBs in previous studies in the same communities. Regression analysis indicated several significant congener-specific correlations in mother-child dyads, and these relationships differed by location and by mother-daughter or mother-son dyads. This is the first study reporting a broad range of PCB sulfates in populations from urban and rural areas.
Assuntos
Bifenilos Policlorados , Feminino , Humanos , Hidroxilação , Mães , Bifenilos Policlorados/metabolismo , População Rural , Sulfatos/metabolismo , Óxidos de EnxofreRESUMO
Laboratory studies of the disposition and toxicity of hydroxylated polychlorinated biphenyl (OH-PCB) metabolites are challenging because authentic analytical standards for most unknown OH-PCBs are not available. To assist with the characterization of these OH-PCBs (as methylated derivatives), we developed machine learning-based models with multiple linear regression (MLR) or random forest regression (RFR) to predict the relative retention times (RRT) and MS/MS responses of methoxylated (MeO-)PCBs on a gas chromatograph-tandem mass spectrometry system. The final MLR model estimated the retention times of MeO-PCBs with a mean absolute error of 0.55 min (n = 121). The similarity coefficients cos θ between the predicted (by RFR model) and experimental MS/MS data of MeO-PCBs were >0.95 for 92% of observations (n = 96). The levels of MeO-PCBs quantified with the predicted MS/MS response factors approximated the experimental values within a 2-fold difference for 85% of observations and 3-fold differences for all observations (n = 89). Subsequently, these model predictions were used to assist with the identification of OH-PCB 95 or OH-PCB 28 metabolites in mouse feces or liver by suggesting candidate ranking information for identifying the metabolite isomers. Thus, predicted retention and MS/MS response data can assist in identifying unknown OH-PCBs.
Assuntos
Bifenilos Policlorados , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Aprendizado de Máquina , Camundongos , Bifenilos Policlorados/metabolismo , Espectrometria de Massas em TandemRESUMO
Airborne polychlorinated biphenyl (PCB) concentrations are higher indoors than outdoors due to their historical use in building materials and their presence in modern paints and surface treatments. For some populations, including school children, PCB levels indoors result in inhalation exposures that may be greater than or equivalent to exposure through diet. In a school, PCB exposure may come from multiple sources. We hypothesized that there are both Aroclor and non-Aroclor sources within a single school and that PCB concentration and congener profiles differ among rooms within a single building. To evaluate this hypothesis and to identify potential localized sources, we measured airborne PCBs in nine rooms in a school. We found that schoolroom concentrations exceed outdoor air concentrations. Schoolroom concentrations and congener profiles also varied from one room to another. The concentrations were highest in the math room (35.75 ng m-3 ± 8.08) and lowest in the practice gym (1.54 ng m-3 ± 0.35). Rooms in the oldest wing of the building, originally constructed between 1920 and 1970, had the highest concentrations. The congener distribution patterns indicate historic use of Aroclor 1254 as well as modern sources of non-Aroclor congeners associated with paint pigments and surface coatings. Our findings suggest this noninvasive source identification method presents an opportunity for targeted source testing for more cost-effective prioritization of materials remediation in schools.
Assuntos
Bifenilos Policlorados , Criança , Materiais de Construção , Humanos , Exposição por Inalação , Bifenilos Policlorados/análise , Instituições AcadêmicasRESUMO
Polychlorinated biphenyls (PCBs) are persistent toxic chemicals with both legacy sources (e.g., Aroclors) and new sources (e.g., unintentional contaminants in some pigments and varnishes). PCB sulfates are derived from further metabolism of hydroxylated PCBs (OH-PCBs), which are oxidative metabolites of PCBs. While OH-PCBs and PCB sulfates are implicated in multiple toxicological effects, studies of PCB sulfates in human serum have been limited by available analytical procedures. We have now developed a method for extraction of PCB sulfates from serum followed by differential analysis with, and without, sulfatase-catalyzed hydrolysis to OH-PCBs. A sulfatase from Helix pomatia was purified by affinity chromatography, and it displayed broad specificity for PCB sulfates without contaminant glucuronidase activity. Following sulfatase-catalyzed hydrolysis of the PCB sulfates extracted from serum, the corresponding OH-PCBs were derivatized to methoxy-PCBs and quantitated by GC-MS/MS. In a pooled sample of human serum, we identified 10 PCB sulfates, with three PCB sulfate congeners exhibiting the highest concentrations from 1200 to 3970 pg/g of serum. In conclusion, we have developed a sensitive and specific method for the determination of PCB sulfates in human serum.
Assuntos
Bifenilos Policlorados , Arocloros , Humanos , Hidroxilação , Sulfatos , Espectrometria de Massas em TandemRESUMO
We measured the concentrations of 205 polychlorinated biphenyl (PCB) congeners in 26 food items: beef steak, butter, canned tuna, catfish, cheese, eggs, french fries, fried chicken, ground beef, ground pork, hamburger, hot dog, ice cream, liver, luncheon meat, margarine, meat-free dinner, milk, pizza, poultry, salmon, sausage, shrimp, sliced ham, tilapia, and vegetable oil. Using Diet History Questionnaire II, we calculated the PCB dietary exposure in mothers and children participating in the AESOP Study in East Chicago, Indiana, and Columbus Junction, Iowa. Salmon had the highest concentration followed by canned tuna, but fish is a minor contributor to exposure. Other animal proteins are more important sources of PCB dietary exposure in this study population. Despite the inclusion of few congeners and food types in previous studies, we found evidence of a decline in PCB concentrations over the last 20 years. We also found strong associations of PCB congener distributions with Aroclors in most foods and found manufacturing byproduct PCBs, including PCB11, in tilapia and catfish. The reduction in PCB levels in food indicates that dietary exposure is comparable to PCB inhalation exposures reported for the same study population.
Assuntos
Bifenilos Policlorados , Animais , Arocloros , Bovinos , Chicago , Criança , Contaminação de Alimentos/análise , Humanos , Indiana , Iowa , Bifenilos Policlorados/análiseRESUMO
To improve the performance of polymeric electrospun nanofiber mats (ENMs) for equilibrium passive sampling applications in water, we integrated two types of multiwalled carbon nanotubes (CNTs; with and without surface carboxyl groups) into polyacrylonitrile (PAN) and polystyrene (PS) ENMs. For 11 polar and moderately hydrophobic compounds (-0.07 ≤ logKOW ≤ 3.13), 90% of equilibrium uptake was achieved in under 0.8 days (t90% values) in nonmixed ENM-CNT systems. Sorption capacity of ENM-CNTs was between 2- and 50-fold greater than pure polymer ENMs, with equilibrium partition coefficients (KENM-W values) ranging from 1.4 to 3.1 log units (L/kg) depending on polymer type (hydrophilic PAN or hydrophobic PS), CNT loading (i.e., values increased with weight percent (wt %) of CNTs), and CNT type (i.e., greater uptake with carboxylated CNTs composites). During field deployment at Muddy Creek in North Liberty, Iowa, optimal ENM-CNTs (PAN with 20 wt % carboxylated CNTs) yielded atrazine concentrations in surface water with a 40% difference relative to analysis of a same-day grab sample. We also observed a mean percent difference of 30 (±20)% when comparing ENM-CNT sampler results to grab sample data collected within 1 week of deployment. With their rapid, high capacity uptake and small material footprint, ENM-CNT equilibrium passive samplers represent a promising alternative to complement traditional integrative passive samplers while offering convenience over large volume grab sampling.
Assuntos
Nanofibras , Nanotubos de Carbono , Poluentes Químicos da Água , Monitoramento Ambiental , Iowa , Polímeros , Poluentes Químicos da Água/análiseRESUMO
PCBs appear in school air because many school buildings were built when PCBs were still intentionally added to building materials and because PCBs are also present through inadvertent production in modern pigment. This is of concern because children are especially vulnerable to the toxic effects of PCBs. Here we report indoor and outdoor air concentrations of PCBs and OH-PCBs from two rural schools and four urban schools, the latter near a PCB-contaminated waterway of Lake Michigan in the United States. Samples (n = 108) were collected as in/out pairs using polyurethane foam passive air samplers (PUF-PAS) from January 2012 to November 2015. Samples were analyzed using GC/MS-MS for all 209 PCBs and 72 OH-PCBs. Concentrations inside schools were 1-2 orders of magnitude higher than outdoors and ranged from 0.5 to 194 ng/m3 (PCBs) and from 4 to 665 pg/m3 (OH-PCBs). Congener profiles were similar within each sampling location across season but different between schools and indicated the sources as Aroclors from building materials and individual PCBs associated with modern pigment. This study is the first cohort-specific analysis to show that some children's PCB inhalation exposure may be equal to or higher than their exposure through diet.
Assuntos
Poluentes Atmosféricos , Bifenilos Policlorados , População Rural , Instituições Acadêmicas , Arocloros , Criança , Monitoramento Ambiental , Humanos , Exposição por Inalação , MichiganRESUMO
Environmental exposures that affect accumulation of polychlorinated biphenyls (PCBs) in humans are complex and not fully understood. One challenge in linking environmental exposure to accumulation is determining variability of PCB concentrations in samples collected from the same person at different times. We hypothesized that PCBs in human blood serum are consistent from year to year in people who live in the same environment between sampling. We analyzed blood serum from children and their mothers from urban and rural U.S. communities (n = 200) for all 209 PCBs (median ∑PCBs = 45 ng/g lw) and 12 hydroxylated PCBs (median ∑OH-PCBs = 0.09 ng/g fw). A subset of these participants (n = 155) also had blood PCB and OH-PCB concentrations analyzed during the previous calendar year. Although many participants had similar levels of PCBs and OH-PCBs in their blood from one year to the next, some participants had surprisingly different levels. Year-to-year variability in ∑PCBs ranged from -87% to 567% and in ∑OH-PCBs ranged from -51 to 358% (5th-95th percentile). This is the first study to report variability of all PCBs and major metabolites in two generations of people and suggests short-term exposures to PCBs may be a significant component of what is measured in human serum.
Assuntos
Poluentes Ambientais/sangue , Mães , Bifenilos Policlorados/sangue , População Rural , População Urbana , Criança , Monitoramento Ambiental , Feminino , Humanos , Hidroxilação , Masculino , Estados UnidosRESUMO
Hydroxylated polychlorinated biphenyls (OH-PCBs) were measured in surficial sediment from Indiana Harbor and Ship Canal (IHSC), East Chicago, IN and five original Monsanto Aroclors. These compounds were measured using gas chromatography with tandem mass spectrometry (GC-MS/MS) and certified standards that allowed us to identify 65 individual or coeluting congeners. Concentrations in the sediment ranged from 0.20 to 26 ng/g dry weight. Profiles of most samples were similar and were dominated by mono- to penta-chlorinated OH-PCBs. Interestingly, most of the samples strongly resembled the OH-PCB profiles of Aroclors 1221, 1242, 1248, and 1254, yet 25% of OH-PCBs measured in the sediment were not detected in Aroclors. A strong positive correlation was found between ΣOH-PCB and ΣPCB (p < 0.0001) and also between many individual OH-PCB:PCB pairs (p < 0.05). Analysis of OH-PCB:PCB pairs suggest PCB degradation is unlikely as a source of OH-PCBs in IHSC sediment. We are the first to report levels of OH-PCBs in sediment and Aroclors, and our discovery is significant because it is likely that OH-PCB contamination exists in sediment anywhere that PCB contamination from Aroclors is present.
Assuntos
Arocloros/análise , Sedimentos Geológicos/química , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Água Doce/química , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , LagosRESUMO
East Chicago, Indiana is a heavily industrialized community bisected by the Indiana Harbor and Ship Canal, which volatilizes ~7.5 kg/yr polychlorinated biphenyls (PCBs). In contrast, the rural Columbus Junction, Iowa area has no known current or past PCB industrial sources. Blood from children and their mothers from these communities were collected April 2008 to January 2009 (n = 177). Sera were analyzed for all 209 PCBs and 4 hydroxylated PCBs (OH-PCBs). Sum PCBs ranged from nondetect to 658 ng/g lw (median = 33.5 ng/g lw). Sum OH-PCBs ranged from nondetect to 1.2 ng/g fw (median = 0.07 ng/g fw). These concentrations are similar to those reported in other populations without high dietary PCB intake. Differences between the two communities were subtle. PCBs were detected in more East Chicago mothers and children than Columbus Junction mothers and children, and children from East Chicago were enriched in lower-molecular weight PCBs. East Chicago and Columbus Junction residents had similar levels of total and individual PCBs and OH-PCBs in their blood. Concentrations of parent PCBs correlated with concentrations of OH-PCBs. This is the first temporally and methodologically consistent study to evaluate all 209 PCBs and major metabolites in two generations of people living in urban and rural areas of the United States.
Assuntos
Mães , Bifenilos Policlorados/sangue , População Rural , População Urbana , Criança , Humanos , Hidroxilação , Modelos Lineares , Peso Molecular , Bifenilos Policlorados/química , Estados UnidosRESUMO
To reconcile the federal regulation of material polychlorinated biphenyl (PCB) concentrations with recently implemented state regulations of airborne PCBs, there is a need to characterize the relationship between PCB emissions from surfaces and air concentrations. We hypothesized that the magnitude and congener distribution of emissions from floors and walls fully account for the airborne PCBs measured in rooms constructed during the height of PCB production and sales. We measured emissions of PCB congeners from various wall and floor materials using polyurethane foam passive emission samplers before and after hexane wiping. Our results revealed that PCB emissions from flooring adequately predicted the magnitude and congener distribution of PCBs observed in the room air. Emissions varied by material within a single building (5 × 103 ng m-2 day-1 from wood panel walls to 3 × 104 ng m-2 day-1 from vinyl tile) and within the same room. Yet congener distributions between material emission PCB profiles and room air PCB profiles were statistically similar. Hexane wiping significantly reduced PCB emissions (>60%), indicating the importance of surface films as an ongoing source of airborne PCBs. The magnitude and congener distribution of material bulk concentrations did not explain that of material emissions or air concentrations. Passive measurements of polychlorinated biphenyl emissions from floors in a university building predict the concentrations of PCBs in room air.
RESUMO
Many PCB-degrading aerobes have been identified which may serve as bioaugmentation strains for aerobic, in situ bioremediation or in combination with dredging operations. The present work describes a lab-scale PCB biodegradation assay which can be used to screen potential bioaugmentation strains or consortia for their ability to decrease PCB mass flux from contaminated sediment to air through biodegradation of freely dissolved PCBs that have desorbed from sediment particles. The assay uses two types of passive samplers to simultaneously measure PCB mass that is freely dissolved in aqueous solution and PCB mass that has volatilized to the headspace of the bioreactor. Using this approach, relative comparisons of PCB mass accumulated in passive samplers between bioaugmented treatments and controls allow for practical assessment of a microbial strain's ability to reduce both freely dissolved and vapor phase PCB concentrations. The method is designed to be conducted using aliquots of homogenized, well-characterized, PCB-contaminated sediment gathered from a field site. This work details the experimental design methodology, required materials, bioreactor set-up, passive sampling, PCB-extraction, sample cleanup, and quantification protocols such that the biodegradation assay can be conducted or replicated. A step-by-step protocol is also included and annotated with photos, tips, and tricks from experienced analysts.â¢Relative comparisons of PCB mass accumulated in passive samplers between experimental treatments and controls allow for practical assessment of bioaugmentation strain's ability to reduce both freely dissolved and vapor phase PCB concentrationsâ¢Passive sampler preparation, deployment, PCB-extraction, cleanup procedures, and quantification are detailed step-by-step and annotated by experienced analysts.
RESUMO
Experiments were conducted to measure biodegradation of polychlorinated biphenyl (PCB) congeners contained in mixture Aroclor 1248 and congeners present in wastewater lagoon sediment contaminated decades earlier at Altavista, Virginia. A well-characterized strain of aerobic PCB-degrading bacteria, Paraburkholderia xenovorans LB400 was incubated in laboratory bioreactors with PCB-contaminated sediment collected at the site. The experiments evaluated strain LB400's ability to degrade PCBs in absence of sediment and in PCB-contaminated sediment slurry. In absence of sediment, LB400 transformed 76% of Aroclor 1248 within seven days, spanning all homolog groups present in the mixture. In sediment slurry, only mono- and di-chlorinated PCB congeners were transformed. These results show that LB400 is capable of rapidly biodegrading most PCB congeners when they are freely dissolved in liquid but cannot degrade PCB congeners having three or more chlorine substituents in sediment slurry. Finally, using GC/MS-MS triple quadrupole spectrometry, this work distinguishes between physical (sorption to cells) and biological removal mechanisms, illuminates the process by which microorganisms with LB400-type congener specificity can selectively transform lower-chlorinated congeners over time, and makes direct comparisons to other studies where individual congener data is reported.
Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Biodegradação Ambiental , Reatores Biológicos , Burkholderiaceae , Cromatografia Gasosa-Espectrometria de Massas , Laboratórios , VirginiaRESUMO
This dataset describes the biodegradation of polychlorinated biphenyl (PCB) congeners by Paraburkholderia xenovorans LB400 in absence and presence of PCB-contaminated sediment slurry, over time [1]. In absence of sediment, PCBs were extracted from aqueous bioreactors by liquid-liquid extraction (LLE) with hexane. In presence of sediment, the extraction method used was a modification of U.S. EPA Method 3545 [3]. Sediment slurry samples were extracted from bioreactors using pressurized fluid extraction (Accelerated Solvent Extractor; Dionex ASE-200) with equal parts acetone and hexane. GC-MS/MS triple quadrapole technology in multiple reaction monitoring mode (MRM) was used for identification and quantification of 209 PCBs as 174 chromatographic peaks. Samples were processed in batches of five along with one method blank per batch. All materials used in sample extraction had either been triple rinsed with solvent (methanol, acetone, and hexane) or combusted overnight at 450⯰C to prevent background PCB contamination. Results from the method blanks were used to determine the limit of quantification (LOQ) as the upper limit of the 95% confidence interval (average mass plus two times the standard deviation). PCB congener masses were corrected for surrogate recoveries less than 100%. The PCB concentration dataset was dichotomized at the threshold of the congener specific LOQ. Concentrations of congeners below the LOQ were treated as zero. During analysis, PCB concentration data was filtered to include only congeners belonging to the commercial PCB mixture, Aroclor 1248. LOQ corrected data can inform future experimental design and be reused by other researchers for further analysis and / or interpretive insights.