Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33295862

RESUMO

Pseudomonas aeruginosa infects patients with cystic fibrosis, burns, wounds and implants. Previously, our group showed that elevated Ca2+ positively regulates the production of several virulence factors in P. aeruginosa, such as biofilm formation, production of pyocyanin and secreted proteases. We have identified a Ca2+-regulated ß-propeller putative phytase, CarP, which is required for Ca2+ tolerance, regulation of the intracellular Ca2+ levels, and plays a role in Ca2+ regulation of P. aeruginosa virulence. Here, we studied the conservation of carP sequence and its occurrence in diverse phylogenetic groups of bacteria. In silico analysis revealed that carP and its two paralogues PA2017 and PA0319 are primarily present in P. aeruginosa and belong to the core genome of the species. We identified 155 single nucleotide alterations within carP, 42 of which lead to missense mutations with only three that affected the predicted 3D structure of the protein. PCR analyses with carP-specific primers detected P. aeruginosa specifically in 70 clinical and environmental samples. Sequence comparison demonstrated that carP is overall highly conserved in P. aeruginosa isolated from diverse environments. Such evolutionary preservation of carP illustrates its importance for P. aeruginosa adaptations to diverse environments and demonstrates its potential as a biomarker.


Assuntos
6-Fitase/genética , Proteínas de Bactérias/genética , Cálcio/metabolismo , Pseudomonas aeruginosa/enzimologia , 6-Fitase/química , 6-Fitase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência Conservada , Fibrose Cística/microbiologia , Humanos , Mutação , Filogenia , Domínios Proteicos , Pseudomonas/classificação , Pseudomonas/enzimologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Especificidade da Espécie
2.
Sci Rep ; 12(1): 8791, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614085

RESUMO

Calcium (Ca2+) is well known as a second messenger in eukaryotes, where Ca2+ signaling controls life-sustaining cellular processes. Although bacteria produce the components required for Ca2+ signaling, little is known about the mechanisms of bacterial Ca2+ signaling. Previously, we have identified a putative Ca2+-binding protein EfhP (PA4107) with two canonical EF-hand motifs and reported that EfhP mediates Ca2+ regulation of virulence factors production and infectivity in Pseudomonas aeruginosa, a human pathogen causing life-threatening infections. Here, we show that EfhP selectively binds Ca2+ with 13.7 µM affinity, and that mutations at the +X and -Z positions within each or both EF-hand motifs abolished Ca2+ binding. We also show that the hydrophobicity of EfhP increased in a Ca2+-dependent manner, however no such response was detected in the mutated proteins. 15 N-NMR showed Ca2+-dependent chemical shifts in EfhP confirming Ca2+-binding triggered structural rearrangements in the protein. Deletion of efhP impaired P. aeruginosa survival in macrophages and virulence in vivo. Disabling EfhP Ca2+ binding abolished Ca2+ induction of pyocyanin production in vitro. These data confirm that EfhP selectively binds Ca2+, which triggers its structural changes required for the Ca2+ regulation of P. aeruginosa virulence, thus establishing the role of EfhP as a Ca2+ sensor.


Assuntos
Motivos EF Hand , Pseudomonas aeruginosa , Cálcio/metabolismo , Humanos , Pseudomonas aeruginosa/fisiologia , Piocianina/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Mol Biol Cell ; 32(16): 1433-1445, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133213

RESUMO

The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a pathogen of lepidopteran insects, has a striking dependence on the host cell actin cytoskeleton. During the delayed-early stage of infection, AcMNPV was shown to induce the accumulation of actin at the cortex of infected cells. However, the dynamics and molecular mechanism of cortical actin assembly remained unknown. Here, we show that AcMNPV induces dynamic cortical clusters of dot-like actin structures that mediate degradation of the underlying extracellular matrix and therefore function similarly to clusters of invadosomes in mammalian cells. Furthermore, we find that the AcMNPV protein actin-rearrangement-inducing factor-1 (ARIF-1), which was previously shown to be necessary and sufficient for cortical actin assembly and efficient viral infection in insect hosts, is both necessary and sufficient for invadosome formation. We mapped the sequences within the C-terminal cytoplasmic region of ARIF-1 that are required for invadosome formation and identified individual tyrosine and proline residues that are required for organizing these structures. Additionally, we found that ARIF-1 and the invadosome-associated proteins cortactin and the Arp2/3 complex localize to invadosomes and Arp2/3 complex is required for their formation. These ARIF-1-induced invadosomes may be important for the function of ARIF-1 in systemic virus spread.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Mariposas/virologia , Nucleopoliedrovírus , Podossomos/metabolismo , Viroses , Animais , Bombyx/metabolismo , Bombyx/virologia , Linhagem Celular , Feminino , Mariposas/metabolismo , Células Sf9 , Spodoptera/metabolismo , Spodoptera/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA