Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biol Reprod ; 104(1): 144-158, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33034631

RESUMO

Whey-acidic protein four-disulfide core domain (WFDC) genes display putative roles in innate immunity and fertility. In mice, a locus on chromosome 2 contains 5 and 11 Wfdc genes in its centromeric and telomeric subloci, respectively. Although Wfdc genes are highly expressed in the epididymis, their contributions to epididymal function remain elusive. Here, we investigated whether Wfdc genes are regulated in response to lipopolysaccharide (LPS)-induced epididymitis, an inflammatory condition that impairs male fertility. We induced epididymitis in mice via (i) interstitial LPS injection into epididymal initial segment and (ii) intravasal LPS injection into the vas deferens towards cauda epididymis. Interstitial and intravasal LPS induced a differential upregulation of inflammatory mediators (interleukin 1 beta, interleukin 6, tumor necrosis factor, interferon gamma, and interleukin 10) in the initial segment and cauda epididymis within 72 h post-treatment. These changes were accompanied by a time-dependent endotoxin clearance from the epididymis. In the initial segment, interstitial LPS upregulated all centromeric (Slpi, Wfdc5, Wfdc12, Wfdc15a, and Wfdc15b) and five telomeric (Wfdc2, Wfdc3, Wfdc6b, Wfdc10, and Wfdc13) Wfdc transcripts at 24 and 72 h. In the cauda epididymis, intravasal LPS upregulated Wfdc5 and Wfdc2 transcripts at 24 h, followed by a downregulation of Wfdc15b and three telomeric (Wfdc6a, Wfdc11, and Wfdc16) gene transcripts at 72 h. Pharmacological inhibition of nuclear factor kappa B activation prevented LPS-induced upregulation of centromeric and telomeric Wfdc genes depending on the epididymal region. We show that LPS-induced inflammation differentially regulated the Wfdc locus in the proximal and distal epididymis, indicating region-specific roles for the Wfdc family in innate immune responses during epididymitis.


Assuntos
Epididimo/metabolismo , Epididimite/genética , Regulação da Expressão Gênica , Proteínas/genética , Animais , Epididimite/induzido quimicamente , Epididimite/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , NF-kappa B/metabolismo , Proteínas/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
2.
Mol Hum Reprod ; 27(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34792600

RESUMO

EPPIN (epididymal protease inhibitor) is a mammalian conserved sperm-binding protein displaying an N-terminal WFDC (whey-acidic protein four-disulfide core) and a C-terminal Kunitz protease inhibitor domains. EPPIN plays a key role in regulating sperm motility after ejaculation via interaction with the seminal plasma protein SEMG1 (semenogelin-1). EPPIN ligands targeting the SEMG1 binding site in the Kunitz domain are under development as male contraceptive drugs. Nevertheless, the relative contributions of EPPIN WFDC and Kunitz domains to sperm function remain obscure. Here, we evaluated the effects of antibodies targeting specific epitopes in EPPIN's WFDC (Q20E antibody, Gln20-Glu39 epitope) and Kunitz (S21C and F21C antibodies, Ser103-Cys123 and Phe90-C110 epitopes, respectively) domains on mouse sperm motility and fertilizing ability. Computer-assisted sperm analysis showed that sperm co-incubation with S21C antibody (but not F21C antibody) lowered progressive and hyperactivated motilities and impaired kinematic parameters describing progressive (straight-line velocity; VSL, average path velocity; VAP and straightness; STR) and vigorous sperm movements (curvilinear velocity; VCL, amplitude of lateral head movement; ALH, and linearity; LIN) compared with control. Conversely, Q20E antibody-induced milder inhibition of progressive motility and kinematic parameters (VAP, VCL and ALH). Sperm co-incubation with S21C or Q20E antibodies affected in vitro fertilization as revealed by reduced cleavage rates, albeit without changes in capacitation-induced tyrosine phosphorylation. In conclusion, we show that targeting specific epitopes in EPPIN Kunitz and WFDC domains inhibits sperm motility and capacitation-associated events, which decrease their fertilizing ability; nevertheless, similar observations in vivo remain to be demonstrated. Simultaneously targeting residues in S21C and Q20E epitopes is a promising approach for the rational design of EPPIN-based ligands with spermostatic activity.


Assuntos
Anticorpos/farmacologia , Anticoncepcionais Masculinos/farmacologia , Desenho de Fármacos , Proteínas Secretadas Inibidoras de Proteinases/antagonistas & inibidores , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Sítios de Ligação , Fenômenos Biomecânicos , Epitopos , Feminino , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Espermatozoides/metabolismo , Tirosina
3.
Andrology ; 12(5): 1024-1037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38497291

RESUMO

BACKGROUND: Region-specific immune environments in the epididymis influence the immune responses to uropathogenic Escherichia coli (UPEC) infection, a relevant cause of epididymitis in men. Toll-like receptors (TLRs) are essential to orchestrate immune responses against bacterial infections. The epididymis displays region-specific inflammatory responses to bacterial-derived TLR agonists, such as lipopolysaccharide (LPS; TLR4 agonist) and lipoteichoic acid (LTA; TLR2/TLR6 agonist), suggesting that TLR-associated signaling pathways could influence the magnitude of inflammatory responses in epididymitis. OBJECTIVES: To investigate the expression and regulation of key genes associated with TLR4 and TLR2/TLR6 signaling pathways during epididymitis induced by UPEC, LPS, and LTA in mice. MATERIAL AND METHODS: Epididymitis was induced in mice using UPEC, ultrapure LPS, or LTA, injected into the interstitial space of the initial segment or the lumen of the vas deferens close to the cauda epididymidis. Samples were harvested after 1, 5, and 10 days for UPEC-treated animals and 6 and 24 h for LPS-/LTA-treated animals. Ex vivo epididymitis was induced by incubating epididymal regions from naive mice with LPS or LTA. RT-qPCR and Western blot assays were conducted. RESULTS: UPEC infection up-regulated Tlr2, Tlr4, and Tlr6 transcripts and their associated signaling molecules Cd14, Ticam1, and Traf6 in the cauda epididymidis but not in the initial segment. In these epididymal regions, LPS and LTA differentially modulated Tlr2, Tlr4, Tlr6, Cd14, Myd88, Ticam1, Traf3, and Traf6 expression levels. NFKB and AP1 activation was required for LPS- and LTA-induced up-regulation of TLR-associated signaling transcripts in the cauda epididymidis and initial segment, respectively. CONCLUSION: The dynamic modulation of TLR4 and TLR2/TLR6 signaling pathways gene expression during epididymitis indicates bacterial-derived antigens elicit an increased tissue sensitivity to combat microbial infection in a spatial manner in the epididymis. Differential activation of TLR-associated signaling pathways may contribute to fine-tuning inflammatory responses along the epididymis.


Assuntos
Epididimite , Lipopolissacarídeos , Transdução de Sinais , Ácidos Teicoicos , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Masculino , Epididimite/genética , Epididimite/metabolismo , Epididimite/microbiologia , Camundongos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Ácidos Teicoicos/farmacologia , Escherichia coli Uropatogênica , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/genética , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo , Epididimo/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Doença Aguda
4.
Hum Reprod Update ; 29(5): 545-569, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141450

RESUMO

BACKGROUND: The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE: A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS: We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES: Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS: A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.


Assuntos
Anticoncepcionais Masculinos , Sêmen , Gravidez , Animais , Feminino , Masculino , Humanos , Ligantes , Anticoncepção/métodos , Anticoncepcionais/farmacologia , Espermatozoides , Anticoncepcionais Masculinos/farmacologia
5.
Life Sci ; 331: 122039, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648198

RESUMO

AIMS: Pregnancy hypertension-induced endothelial dysfunction associated with impairment of nitric oxide (NO) bioavailability and hemodynamic derangements is a challenging for urgent procedures requiring maternal anesthesia. The volatile anesthetic isoflurane has demonstrated NO-associated protective effects. However, this isoflurane-induced effect is still unclear in pregnancy hypertension. Therefore, the present study examined the potential protective effects of isoflurane anesthesia on endothelial dysfunction and hemodynamic changes induced by hypertensive pregnancy associated with fetal and placental growth restrictions. MATERIALS AND METHODS: Animals were distributed into four groups: normotensive pregnant rats (Preg), anesthetized pregnant rats (Preg+Iso), hypertensive pregnant rats (HTN-Preg), and anesthetized hypertensive pregnant rats (HTN-Preg+Iso). Systolic and diastolic pressures, mean arterial pressure (MAP), heart rate, fetal and placental weights, vascular contraction, endothelium-derived NO-dependent vasodilation, and NO levels were assessed. The vascular endothelial growth factor (VEGF) levels and endothelial NO synthase (eNOS) Serine (1177) phosphorylation (p-eNOS) expression were also examined. KEY FINDINGS: Isoflurane produced more expressive hypotensive effects in the HTN-Preg+Iso versus Preg+Iso group, with respective reductions in MAP by 50 ± 13 versus 25 ± 4 mmHg (P < 0.05). Also, HTN-Preg+Iso compared to the HTN-Preg group showed (respectively) preventions against the weight loss of the fetuses (4.0 ± 0.6 versus 2.8 ± 0.6 g, P < 0.05) and placentas (0.37 ± 0.06 versus 0.30 ± 0.06 mg, P < 0.05), hyper-reactive vasocontraction response (1.8 ± 0.4 versus 2.8 ± 0.6 g, P < 0.05), impaired endothelium-derived NO-dependent vasodilation (84 ± 8 versus 50 ± 17 %, P < 0.05), reduced VEGF levels (147 ± 46 versus 25 ± 13 pg/mL, P < 0.05), and decreased p-eNOS expression (0.24 ± 0.07 versus 0.09 ± 0.05 arbitrary units, P < 0.05). SIGNIFICANCE: Isoflurane anesthesia protects maternal endothelial function in pregnancy hypertension, and possibly endothelium-derived NO is involved.


Assuntos
Anestesia , Hipertensão , Isoflurano , Feminino , Gravidez , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular , Isoflurano/farmacologia , Óxido Nítrico , Placenta
6.
Mol Cell Endocrinol ; 506: 110754, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044375

RESUMO

EPPIN is a sperm-surface drug target for male contraception. Here we investigated EPPIN-interacting proteins in mouse spermatozoa. We showed that EPPIN is an androgen-dependent gene, expressed in the testis and epididymis, but also present in the vas deferens, seminal vesicle and adrenal gland. Mature spermatozoa presented EPPIN staining on the head and flagellum. Immunoprecipitation of EPPIN from spermatozoa pre-incubated with seminal vesicle fluid (SVF) followed by LC-MS/MS or Western blot revealed the co-immunoprecipitation of SVS2, SVS3A, SVS5 and SVS6. In silico and Far-Western blot approaches demonstrated that EPPIN binds SVS2 in a protein network with other SVS proteins. Immunofluorescence using spermatozoa pre-incubated with SVF or recombinant SVS2 demonstrated the co-localization of EPPIN and SVS2 both on sperm head and flagellum. Our data show that EPPIN's roles in sperm function are conserved between mouse and human, demonstrating that the mouse is a suitable experimental model for translational studies on EPPIN.


Assuntos
Proteínas Secretadas Inibidoras de Proteinases/fisiologia , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Espermatozoides/metabolismo , Androgênios/metabolismo , Animais , Cromatografia Líquida , Epididimo/química , Epididimo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Mapas de Interação de Proteínas/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Espermatozoides/química , Espectrometria de Massas em Tandem , Testículo/química , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA