Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Fluoresc ; 32(4): 1543-1556, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35543794

RESUMO

In the present work, the fluorescence quenching of novel thiophene substituted1,3,4-oxadiazole derivative 2-(4-(4-vinylphenyl) phenyl)-5-(5-(4-vinylphenyl)thiophen-2-yl)-1,3,4-oxadiazole (TSO) by five different environmental pollutant aromatic amine derivatives like 2,4-dimethylaniline, 3-chloroaniline, 4-chloroaniline, o-anisidine, and m-toluidine has been studied at room temperature through steady-state and time-resolved methods. It is observed that, the quenching efficiency is highest in the case of o-anisidine and least in the case of 3-chloroaniline. The fluorescence quenching mechanism between TSO and aromatic amines is analysed through different quenching models. The results suggest that, the fluorescence quenching is due to diffusion assisted dynamic or collisional quenching according to the sphere of action static quenching model and according to the finite sink approximation model, the bimolecular quenching reactions are due to the collective effect of dynamic and static quenching. Further, cyclic voltammetry and DFT studies suggest that the fluorescence quenching is due to electron transfer. Binding equilibria analysis confirms the 1:1 stoichiometric ratio between fluorophore and the quencher.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA