Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 233(6): 2561-2572, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954852

RESUMO

Difficulties quantifying pathogen load and mutualist abundance limit our ability to connect disease dynamics to host community ecology. For example, specific predictions about how differential pathogen load is hypothesised to drive host competitive outcomes are rarely tested. Additionally, although infection is known to affect mutualists, we rarely measure the magnitude of pathogen effects on mutualist abundance across host competitive contexts. We tested for both mechanisms in a plant-rhizobia-nematode system. We paired the legume Medicago lupulina with intraspecific and interspecific plant competitors, with and without a generalist nematode parasite Meloidogyne sp. Relative change in plant biomass was used to determine how nematode inoculation affected plant competitive outcomes. We counted nematode galls to test for direct effects of parasitism on plant competition and rhizobia nodules to test for indirect effects of nematode presence on rhizobium abundance. Parasites were destabilising despite similar nematode load across competition treatments. During interspecific compared with intraspecific competition, nematode inoculation decreased nodulation on M. lupulina, increased nodulation on Trifolium repens and had no effect on nodulation on Chamaecrista fasciculata. We found no support for hypothesised direct effects of nematode load on competitive outcomes and strong but idiosyncratic indirect effects of nematode inoculation on rhizobium abundance.


Assuntos
Nematoides , Rhizobium , Animais , Medicago , Plantas , Simbiose
2.
Ecol Evol ; 12(1): e8283, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126998

RESUMO

Evidence is accumulating that the soil microbiome-the community of microorganisms living in soils-has a major effect on plant traits and fitness. However, most work to date has taken place under controlled laboratory conditions and has not experimentally disentangled the effect of the soil microbiome on plant performance from the effects of key endosymbiotic constituents. As a result, it is difficult to extrapolate from existing data to understand the role of the soil microbiome in natural plant populations. To address this gap, we performed a field experiment using the black medick Medicago lupulina to test how the soil microbiome influences plant performance and colonization by two root endosymbionts (the mutualistic nitrogen-fixing bacteria Ensifer spp. and the parasitic root-knot nematode Meloidogyne hapla) under natural conditions. We inoculated all plants with nitrogen-fixing bacteria and factorially manipulated the soil microbiome and nematode infection. We found that plants grown in microbe-depleted soil exhibit greater mortality, but that among the survivors, there was no effect of the soil microbiome on plant performance (shoot biomass, root biomass, or shoot-to-root ratio). The soil microbiome also impacted parasitic nematode infection and affected colonization by mutualistic nitrogen-fixing bacteria in a plant genotype-dependent manner, increasing colonization in some plant genotypes and decreasing it in others. Our results demonstrate the soil microbiome has complex effects on plant-endosymbiont interactions and may be critical for survival under natural conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA