RESUMO
Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (-/-) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol's regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (-/-) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (-/-) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism.
RESUMO
INTRODUCTION: The metabolic alterations reflecting the influence of prostate cancer cells can be captured through metabolomic profiling. OBJECTIVE: To characterize the plasma metabolomic profile in prostatic intraepithelial neoplasia (PIN) and prostate cancer (PCa). METHODS: Metabolomics analyses were performed in plasma samples from individuals classified as non-cancerous control (n = 36), with PIN (n = 16), or PCa (n = 27). Untargeted [26 moieties identified after pre-processing by gas chromatography/mass spectrometry (GC/MS)] and targeted [46 amino acids, carbohydrates, organic acids and fatty acids by GC/MS, and 16 nucleosides and amino acids by ultra performance liquid chromatography-triple quadrupole/mass spectrometry (UPLC-TQ/MS)] analyses were performed. Prostate specific antigen (PSA) concentrations were measured in all samples. In PCa patients, the Gleason scores were determined. RESULTS: The metabolites that were best discriminated (p < 0.05, FDR < 0.2) for the Kruskal-Wallis test with Dunn's post-hoc comparing the control versus the PIN and PCa groups included isoleucine, serine, threonine, cysteine, sarcosine, glyceric acid, among several others. PIN was mainly characterized by alterations on steroidogenesis, glycine and serine metabolism, methionine metabolism and arachidonic acid metabolism, among others. In the case of PCa, the most predominant metabolic alterations were ubiquinone biosynthesis, catecholamine biosynthesis, thyroid hormone synthesis, porphyrin and purine metabolism. In addition, we identified metabolites that were correlated to the PSA [i.e. hypoxanthine (r = - 0.60, p < 0.05; r = - 0.54, p < 0.01) and uridine (r = - 0.58, p < 0.05; r = - 0.50, p < 0.01) in PIN and PCa groups, respectively] and metabolites that were significantly different in PCa patients with Gleason score < 7 and ≥ 7 [i.e. arachidonic acid, median (P25-P75) = 883.0 (619.8-956.4) versus 570.8 (505.6-651.8), respectively (p < 0.01)]. CONCLUSIONS: This human plasma metabolomic assessment contributes to the understanding of the unique metabolic features exhibited in PIN and PCa and provides a list of metabolites that can have the potential to be used as biomarkers for early detection of disease progression and management.
Assuntos
Neoplasia Prostática Intraepitelial/metabolismo , Neoplasias da Próstata/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/sangue , Cromatografia Líquida/métodos , Homólogo 5 da Proteína Cromobox , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Espectrometria de Massas/métodos , Metaboloma/genética , Metabolômica/métodos , Pessoa de Meia-Idade , Gradação de Tumores , Plasma/metabolismo , Antígeno Prostático Específico/análise , Federação RussaRESUMO
GMDP (glucosoaminyl-muramyl-dipeptide), a synthetic analog of the peptidoglycan fragment of the bacterial cell wall, is an active component of the immunomodulatory drug Licopid. But the pharmacokinetic parameters of GMDP in humans after oral administration have not been investigated yet. The present study aimed at developing and validating a sensitive LC-MS/MS method for the analysis of GMDP in human plasma. The sample was prepared by solid-phase extraction using Strata-X 33 µm polymeric reversed-phase 60 mg/3 mL cartridges Phenomenex (Torrance, CA, USA). The analytes were separated using an Acquity UPLC BEN C18 column, 1.7 µm 2.1 × 50 mm Waters (Milford, USA). GMDP and internal standard growth hormone releasing peptide-2 (pralmorelin) were ionized in positive electrospray ionization mode and detected in multiple reaction monitoring mode. The developed method was validated within a linear range of 50-3000 pg/mL for GMDP. Accuracy for all analytes, given as the deviation between the nominal and measured concentration and assay variability , ranged from 1.61 to 3.02% and from 0.89 to 1.79%, respectively, for both within- and between-run variabilities. The developed and validated HPLC-MS/MS method was successfully used to obtain the plasma pharmacokinetic profiles of GMDP distribution in human plasma.
Assuntos
Acetilmuramil-Alanil-Isoglutamina/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Acetilmuramil-Alanil-Isoglutamina/administração & dosagem , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/farmacocinética , Administração Oral , Adolescente , Adulto , Humanos , Limite de Detecção , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto JovemRESUMO
The steroid submetabolome, or steroidome, is of particular interest in prostate cancer (PCa) as the dependence of PCa growth on androgens is well known and has been routinely exploited in treatment for decades. Nevertheless, the community is still far from a comprehensive understanding of steroid involvement in PCa both at the tissue and at systemic level. In this study we used liquid chromatography/high resolution mass spectrometry (LC/HRMS) backed by a dynamic retention time database DynaSTI to obtain a readout on circulating steroids in a cohort reflecting a progression of the PCa. Hence, 60 relevant compounds were annotated in the resulting LC/HRMS data, including 22 unknown steroid isomers therein. Principal component analysis revealed only subtle alterations of the systemic steroidome in the study groups. Next, a supervised approach allowed for a differentiation between the healthy state and any of the stages of the disease. Subsequent clustering of steroid metabolites revealed two groups responsible for this outcome: one consisted primarily of the androgens, whereas another contained corticosterone and its metabolites. The androgen data supported the currently established involvement of a hypothalamic-pituitary-gonadal axis in the development of PCa, whereas biological role of corticosterone remained elusive. On top of that, current results suggested a need for improvement in the dynamic range of the analytical methods to better understand the role of low abundant steroids, as the analysis revealed an involvement of estrogen metabolites. In particular, 2-hydroxyestradiol-3-methylether, one of the compounds present in the disease phenotype, was annotated and reported for the first time in men.
Assuntos
Corticosterona , Neoplasias da Próstata , Masculino , Humanos , Esteroides/metabolismo , Neoplasias da Próstata/metabolismo , Androgênios/metabolismo , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Growing antimicrobial resistance has accelerated the development of anti-virulence drugs to suppress bacterial toxicity without affecting cell viability. Fluorothiazinon (FT), an anti-virulence, type three secretion system and flagella motility inhibitor which has shown promise to suppress drug-resistant pathogens having the potential to enhance the efficacy of commonly prescribed antibiotics when used in combination. In this study we characterized the pharmacokinetics, tissue distribution, bioavailability and excretion of FT in rats and rabbits. FT presented a dose-proportional linear increase in the blood of rats. Tissue distribution profiling confirmed that FT distributes to all organs being substantially higher than in the blood of rats. The bioavailability of FT was higher when administered with starch than with water implying FT should be ideally dosed with food. FT was primarily excreted in the feces in rats and rabbits while negligible amounts are recovered from the urine.
Assuntos
Antibacterianos , Animais , Feminino , Masculino , Coelhos , Ratos , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/urina , Disponibilidade Biológica , Fezes/química , Ratos Sprague-Dawley , Distribuição Tecidual , Virulência/efeitos dos fármacosRESUMO
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family with diverse psychopharmacological effects including antidepressant and anxiolytic actions. However, the clinical use of BDNF is limited due to its poor pharmacokinetic properties. The development of low-molecular-weight BDNF mimetics passing through the blood-brain barrier is an emerging strategy for improved managing psychiatric diseases. The present study characterizes a novel dipeptide mimetic of the 2nd BDNF loop named GTS-201, which exhibits psychotropic properties in experimental animal models of anxiety and alcohol dependence. The aim of this work was to study the pharmacokinetics of GTS-201 in rats at a saturating dosage of 5 mg/kg applied by the intraperitoneal route and to characterize the effects on neurotransmitter levels in the blood and brain. The maximum concentration (Cmax) of GTS-201 in the plasma (867 ± 69 ng/ml) was recorded at 35 ± 7.7 min after administration (Tmax) with a half-elimination period (T1/2) of 19.5 ± 1.8 min, while in the brain tissue Cmax was 14.92 ± 3.11 ng/ml, Tmax was 40.0 ± 7.7 min and T1/2 were 87.5 ± 12.7 min. The relative tissue availability of the GTS-201 for the brain reached 2.9%. At the dose applied, GTS-201 induced a significant increase of serotonin (5-fold) and dopamine levels in the brain tissue (8-fold) along with a decrease in cortisol content in blood plasma 45 min after acute administration. In summary, GTS-201 crosses the blood-brain barrier after acute administration and affects the activity of serotonergic and dopaminergic systems, which may underlie its neuropsychotropic effects described previously.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dipeptídeos , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dipeptídeos/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Dopamina , NeurotransmissoresRESUMO
Metabolomics is a promising technology for the application of translational medicine to cardiovascular risk. Here, we applied a liquid chromatography/tandem mass spectrometry approach to explore the associations between plasma concentrations of amino acids, methylarginines, acylcarnitines, and tryptophan catabolism metabolites and cardiometabolic risk factors in patients diagnosed with arterial hypertension (HTA) (n = 61), coronary artery disease (CAD) (n = 48), and non-cardiovascular disease (CVD) individuals (n = 27). In total, almost all significantly different acylcarnitines, amino acids, methylarginines, and intermediates of the kynurenic and indolic tryptophan conversion pathways presented increased (p < 0.05) in concentration levels during the progression of CVD, indicating an association of inflammation, mitochondrial imbalance, and oxidative stress with early stages of CVD. Additionally, the random forest algorithm was found to have the highest prediction power in multiclass and binary classification patients with CAD, HTA, and non-CVD individuals and globally between CVD and non-CVD individuals (accuracy equal to 0.80 and 0.91, respectively). Thus, the present study provided a complex approach for the risk stratification of patients with CAD, patients with HTA, and non-CVD individuals using targeted metabolomics profiling.
RESUMO
INTRODUCTION: Synthetic cannabinoids are abused substances with strong psychoactive effects. Little is known about the effects on neurotransmission and the toxicity of the second-generation cannabinoid 5F-APINAC. The objective was to assess the influence of short- and long-term exposures of 5F-APINAC on metabolites associated with neurotransmission on zebrafish. METHODS: Short-term ("acute", 4 h) and long-term ("chronic", 96 h) exposures to 5F-APINAC were performed at 0.001, 0.01, 0.1, 1.0 and 10 µM. Intervention groups were compared with a vehicle control. Each group n = 20 zebrafish eggs/larvae. Metabolites related to neurotransmission were determined. RESULTS: In chronic exposure, larvae exposed to 10 µM 5F-APINAC presented morphological and developmental alterations. GABA had the lowest concentrations at higher exposure in acute (p < 0.01) and chronic (p < 0.001) experiments. Glutamine showed a descending trend in the acute experiment, but an ascending trend in the chronic exposure (p < 0.05). In chronic exposure, tryptophan presented an overall descending trend, but with a neat increase at 10 µM 5F-APINAC (p < 0.001). Tryptamine in acute exposure presented lower (p < 0.05) concentrations at higher doses. Dopamine and acetylcholine presented highest (p < 0.05) concentrations in the acute and chronic exposures, but with a drop at the highest doses in the chronic experiments. In chronic exposure, xanthurenic acid decreased, except for the highest dose. Picolinic acid was increased at the highest doses in the chronic experiment (p < 0.001). CONCLUSIONS: Short- and long-term exposures induced metabolomic alterations associated with the gamma-aminobutyric acid/glutamic acid, dopaminergic/adrenergic, cholinergic neurotransmitter systems, and the kynurenine pathway. Chronic exposure at 10 µM 5F-APINAC was associated with embryotoxicity confirmed by teratogenesis.
Assuntos
Adamantano/análogos & derivados , Canabinoides/toxicidade , Indazóis/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Teratogênese/efeitos dos fármacos , Peixe-Zebra , Animais , Metaboloma/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismoRESUMO
INTRODUCTION: Diazepam is a well-known psychoactive drug widely used worldwide for the treatment of anxiety, seizures, alcohol withdrawal syndrome, muscle spasms, sleeplessness, agitation, and pre/post-operative sedation. It is part of the benzodiazepine family, substances known to primarily act by binding and enhancing gamma-aminobutyric acid (GABAA) receptors. The objective of the present work was to investigate the influence of short and medium-term diazepam exposures on neurotransmitters measured through targeted metabolomics using a zebrafish embryo model. METHODS: Short-term (2.5 h) and medium-term (96 h) exposures to diazepam were performed at drug concentrations of 0.8, 1.6, 16, and 160 µg/L. Intervention groups were compared with a vehicle control group. Each group consisted of 20 zebrafish eggs/larvae. Metabolites related with neurotransmission were determined by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). RESULTS: Thirty-six compounds were quantified. Significantly increased tryptophan and serotonin concentrations were found in the intervention groups receiving higher doses of diazepam in 2.5 h exposure (p < 0.05 control versus intervention groups). Tyrosine concentrations were higher (p < 0.05) at higher concentrations in 2.5 h exposure, but lower (p < 0.05) at higher concentrations in 96 h exposure. Both phenylalanine and aspartic acid concentrations were higher (p < 0.05) at higher doses in 2.5 h and 96 h exposure. CONCLUSIONS: Short- and medium-term exposures to diazepam induce dose- and time-dependent metabolomic alterations associated with the serotonergic, dopaminergic/adrenergic, and aspartic acid neurotransmitter systems in zebrafish.
Assuntos
Ácido Aspártico/metabolismo , Diazepam/farmacologia , Hipnóticos e Sedativos/farmacologia , Neurotransmissores/metabolismo , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metaboloma/efeitos dos fármacos , Serotonina/metabolismo , Triptofano/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimentoRESUMO
The strong psychoactive effects of synthetic cannabinoids raise the need for the deeper studying of their neurometabolic effects. The pharmacokinetic properties of 5F-APINAC and its influence on metabolomics profiles associated with neurotransmission were investigated in rabbit plasma. Twelve rabbits divided into three groups received 1-mL 5F-APINAC at 0.1, 1 and 2 mg/kg. The intervention groups were compared with the controls. Sampling was performed at nine time points (0-24 h). Ultra-high-performance liquid chromatography-tandem mass spectrometry was used. The pharmacokinetics were dose-dependent (higher curve at a higher dose) with a rapid biotransformation, followed by gradual elimination within 24 h. The tryptophan concentrations abruptly decreased (p < 0.05) in all tested groups, returning to the basal levels after 6 h. 5-hydroxylindole acetic acid increased (p < 0.05) in the controls, but this trend was absent in the treated groups. The aspartic acid concentrations were elevated (p < 0.001) in the treated groups. L-kynurenine was elevated (p < 0.01) in the intervention groups receiving 1 mg/kg to 2 mg/kg. Dose-dependent elevations (p < 0.01) were found for kynurenic acid, xanthurenic acid and quinolinic acid (p < 0.01), whereas the anthranilic acid trends were decreased (p < 0.01). The indole-3-propionic acid and indole-3-carboxaldehyde trends were elevated (p < 0.05), whereas the indole-3-lactic acid trajectories were decreased (p < 0.01) in the intervention groups. 5F-APINAC administration had a rapid biotransformation and gradual elimination. The metabolites related to the kynurenine and serotonergic system/serotonin pathways, aspartic acid innervation system and microbial tryptophan catabolism were altered.
RESUMO
OBJECTIVE: Sarcosine was postulated in 2009 as a biomarker for prostate cancer (PCa). Here, we assess plasma sarcosine as a biomarker that is complementary to prostate-specific antigen (PSA). METHODS: Plasma sarcosine was measured using gas chromatography-mass spectrometry (GC-MS) in adults classified as noncancerous controls (with benign prostate hyperplasia [BPH], n = 36), with prostatic intraepithelial neoplasia (PIN, n = 16), or with PCa (n = 27). Diagnostic accuracy was assessed using receiver operating characteristic curve analysis. RESULTS: Plasma sarcosine levels were higher in the PCa (2.0 µM [1.3-3.3 µM], P <.01) and the PIN (1.9 µM [1.2-6.5 µM], P <.001) groups than in the BPH (0.9 µM [0.6-1.4 µM]) group. Plasma sarcosine had "good" and "very good" discriminative capability to detect PIN (area under the curve [AUC], 0.734) and PCa (AUC, 0.833) versus BPH, respectively. The use of PSA and sarcosine together improved the overall diagnostic accuracy to detect PIN and PCa versus BPH. CONCLUSION: Plasma sarcosine measured by GC-MS had "good" and "very good" classification performance for distinguishing PIN and PCa, respectively, relative to noncancerous patients diagnosed with BPH.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Hiperplasia Prostática/sangue , Hiperplasia Prostática/diagnóstico , Neoplasia Prostática Intraepitelial/sangue , Neoplasia Prostática Intraepitelial/diagnóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Sarcosina/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Biomarcadores Tumorais , Biópsia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Antígeno Prostático Específico/sangue , Curva ROC , Reprodutibilidade dos TestesRESUMO
The development of cardiovascular diseases (CVDs) is often asymptomatic. Identification of initial indicators of cardiometabolic disruption may assist in its early detection. The objective was to determine the relationships between plasma acylcarnitines (ACs) and cardiometabolic risk factors in adults with and without CVDs. The AC profile in human plasma of healthy controls [non-CVD group, n = 13)] and individuals diagnosed with CVDs (CVD group, n = 34) were compared. A targeted analysis of 29 ACs was performed using flow injection analysis-tandem mass spectrometry. There were significant direct correlations (p < 0.05) between ACs and cardiometabolic risk factors. Comparing the groups after adjustment for covariates, showed that the ACs that were best differentiated (p < 0.05) between the two groups and that presented "good" diagnostic accuracy were carnitine [30.7 (25.5-37.7) vs. 37.7 (32.3-45.0) µM], the short-chain ACs: acetylcarnitine [8.9 (7.4-10.2) vs. 11.9 (9.2-14.4) µM] and isovalerylcarnitine [0.10 (0.06-0.13) vs. 0.13 (0.10-0.16) µM], and the medium-chain ACs: hexanoylcarnitine [0.04 (0.03-0.05) vs. 0.06 (0.05-0.07) µM] and decenoylcarnitine [0.18 (0.12-0.22) vs. 0.22 (0.17-0.32) µM]. This assessment contributes to the identification of the unique metabolic features exhibited in association with cardiometabolic risk in adults diagnosed with CVD. The altered metabolites have the potential to be used as biomarkers for early detection of CVD.