RESUMO
Vascular endothelial cells form the inner cellular lining of blood vessels and have myriad physiologic functions including angiogenesis and response to hypoxia. We recently identified a set of endothelial cell (EC)-enriched long noncoding RNAs (lncRNAs) in differentiated human primary cell types and described the role of the STEEL lncRNA in angiogenic patterning. We sought to further understand the role of EC-enriched lncRNAs in physiologic adaptation of the vascular endothelium. In this work, we describe an abundant, cytoplasmic, and EC-enriched lncRNA, GATA2-AS1, that is divergently transcribed from the EC-enriched developmental regulator, GATA2. While GATA2-AS1 is largely coexpressed with GATA2 in ECs, GATA2-AS1 and GATA2 appear to be complementary rather than synergistic as they have mostly distinct target genes. Common single nucleotide variants in GATA2-AS1 exons are associated with early-onset coronary artery disease and decreased expression of GATA2-AS1 in endothelial cell lines. In most cells, HIF1-α is central to the transcriptional response to hypoxia, while in ECs, both HIF1-α and HIF2-α are required to coordinate an acute and chronic response, respectively. In this setting, GATA2-AS1 contributes to the "HIF switch" and augments HIF1-α induction in acute hypoxia to regulate HIF1-α/HIF2-α balance. In hypoxia, GATA2-AS1 orchestrates HIF1-α-dependent induction of the glycolytic pathway and HIF1-α-independent maintenance of mitochondrial biogenesis. Similarly, GATA2-AS1 coordinates both metabolism and "tip/stalk" cell signaling to regulate angiogenesis in hypoxic ECs. Furthermore, we find that GATA2-AS1 expression patterns are perturbed in atherosclerotic disease. Together, these results define a role for GATA2-AS1 in the EC-specific response to hypoxia.
Assuntos
Fator de Transcrição GATA2 , Subunidade alfa do Fator 1 Induzível por Hipóxia , RNA Longo não Codificante , Transdução de Sinais , Humanos , Células Endoteliais/metabolismo , Fator de Transcrição GATA2/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
BACKGROUND: eNOS (endothelial nitric oxide synthase) is an endothelial cell (EC)-specific gene predominantly expressed in medium- to large-sized arteries where ECs experience atheroprotective laminar flow with high shear stress. Disturbed flow with lower average shear stress decreases eNOS transcription, which leads to the development of atherosclerosis, especially at bifurcations and curvatures of arteries. This prototypic arterial EC gene contains 2 distinct flow-responsive cis-DNA elements in the promoter, the shear stress response element (SSRE) and the KLF (Krüppel-like factor) element. Previous in vitro studies suggested their positive regulatory functions on flow-induced transcription of EC genes including eNOS. However, the in vivo function of these cis-DNA elements remains unknown. METHODS: Insertional transgenic mice with a mutation at each flow-responsive cis-DNA element were generated using a murine eNOS promoter-ß-galactosidase reporter by linker-scanning mutagenesis and compared with episomal-based mutations in vitro. DNA methylation at the eNOS proximal promoter in mouse ECs was assessed by bisulfite sequencing or pyrosequencing. RESULTS: Wild type mice with a functional eNOS promoter-reporter transgene exhibited reduced endothelial reporter expression in the atheroprone regions of disturbed flow (n=5). It is surprising that the SSRE mutation abrogated reporter expression in ECs and was associated with aberrant hypermethylation at the eNOS proximal promoter (n=7). Reporter gene silencing was independent of transgene copy number and integration position, indicating that the SSRE is a critical cis-element necessary for eNOS transcription in vivo. The KLF mutation demonstrated an integration site-specific decrease in eNOS transcription, again with marked promoter methylation (n=8), suggesting that the SSRE alone is not sufficient for eNOS transcription in vivo. In wild type mice, the native eNOS promoter was significantly hypermethylated in ECs from the atheroprone regions where eNOS expression was markedly repressed by chronic disturbed flow, demonstrating that eNOS expression is regulated by flow-dependent DNA methylation that is region-specific in the arterial endothelium in vivo. CONCLUSIONS: We report, for the first time, that the SSRE and KLF elements are critical flow sensors necessary for a transcriptionally permissive, hypomethylated eNOS promoter in ECs under chronic shear stress in vivo. Moreover, eNOS expression is regulated by flow-dependent epigenetic mechanisms, which offers novel mechanistic insight on eNOS gene regulation in atherogenesis.
Assuntos
Regulação da Expressão Gênica , Óxido Nítrico Sintase Tipo III/genética , Sequências Reguladoras de Ácido Nucleico , Elementos de Resposta , Animais , Biomarcadores , Velocidade do Fluxo Sanguíneo , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Epigênese Genética , Dosagem de Genes , Inativação Gênica , Genes Reporter , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Óxido Nítrico Sintase Tipo III/metabolismo , Regiões Promotoras Genéticas , Ativação TranscricionalRESUMO
Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.
Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Lesão Pulmonar Aguda/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais , Humanos , Camundongos , MicroRNAs/genética , Sepse/complicações , Sepse/terapiaRESUMO
Homogeneous populations of mature differentiated primary cell types can display variable responsiveness to extracellular stimuli, although little is known about the underlying mechanisms that govern such heterogeneity at the level of gene expression. In this article, we show that morphologically homogenous human endothelial cells exhibit heterogeneous expression of VCAM1 after TNF-α stimulation. Variability in VCAM1 expression was not due to stochasticity of intracellular signal transduction but rather to preexisting established heterogeneous states of promoter DNA methylation that were generationally conserved through mitosis. Variability in DNA methylation of the VCAM1 promoter resulted in graded RelA/p65 and RNA polymerase II binding that gave rise to a distribution of VCAM1 transcription in the population after TNF-α stimulation. Microarray analysis and single-cell RNA sequencing revealed that a number of cytokine-inducible genes shared this heterogeneous response pattern. These results show that heritable epigenetic heterogeneity is fundamental in inflammatory signaling and highlight VCAM1 as a metastable epiallele.
Assuntos
Epigênese Genética/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Regiões Promotoras Genéticas/imunologia , RNA Polimerase II/genética , RNA Polimerase II/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologiaRESUMO
Endothelial cell (EC)-enriched protein coding genes, such as endothelial nitric oxide synthase (eNOS), define quintessential EC-specific physiologic functions. It is not clear whether long noncoding RNAs (lncRNAs) also define cardiovascular cell type-specific phenotypes, especially in the vascular endothelium. Here, we report the existence of a set of EC-enriched lncRNAs and define a role for spliced-transcript endothelial-enriched lncRNA (STEEL) in angiogenic potential, macrovascular/microvascular identity, and shear stress responsiveness. STEEL is expressed from the terminus of the HOXD locus and is transcribed antisense to HOXD transcription factors. STEEL RNA increases the number and integrity of de novo perfused microvessels in an in vivo model and augments angiogenesis in vitro. The STEEL RNA is polyadenylated, nuclear enriched, and has microvascular predominance. Functionally, STEEL regulates a number of genes in diverse ECs. Of interest, STEEL up-regulates both eNOS and the transcription factor Kruppel-like factor 2 (KLF2), and is subject to feedback inhibition by both eNOS and shear-augmented KLF2. Mechanistically, STEEL up-regulation of eNOS and KLF2 is transcriptionally mediated, in part, via interaction of chromatin-associated STEEL with the poly-ADP ribosylase, PARP1. For instance, STEEL recruits PARP1 to the KLF2 promoter. This work identifies a role for EC-enriched lncRNAs in the phenotypic adaptation of ECs to both body position and hemodynamic forces and establishes a newer role for lncRNAs in the transcriptional regulation of EC identity.
Assuntos
Cromatina/metabolismo , Células Endoteliais , Neovascularização Fisiológica , RNA Longo não Codificante , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Hemodinâmica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos SCID , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.
Assuntos
Cromatina/química , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/química , Peixe-Zebra/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/metabolismo , Endotélio Vascular/citologia , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/crescimento & desenvolvimentoRESUMO
Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics.
Assuntos
Doenças Cardiovasculares/genética , Endotélio Vascular/metabolismo , Epigênese Genética , Acetilação , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Regulação da Expressão Gênica , Terapia Genética , Histonas/metabolismo , Humanos , Metilação , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição GênicaRESUMO
PURPOSE OF REVIEW: Remarkable new advances have been made in the field of posttranscriptional gene regulation over recent years. These include the revelation of noncoding RNAs, such as microRNAs, antisense transcripts and their interactions with RNA-binding proteins (RBPs) in the context of both health and disease settings, such as hypoxia. In particular, these discoveries bear much relevance to the field of vascular biology, which historically has focused upon transcriptional processes. Thus, the contributions of these posttranscriptional gene regulatory mechanisms to vascular and endothelial biology represent a newer concept that warrants discussion. RECENT FINDINGS: Recent studies have revealed two emerging themes that are critical to endothelial/vascular biology and function. First is the functional integration between the microRNA pathway and the cellular hypoxic response, which, in addition to specific microRNAs, involves key components of the microRNA biogenesis machinery. A key concept here is the regulation of a master transcriptional programme through posttranscriptional mechanisms. The second major theme involves the dynamic interactions between RBPs, microRNAs and antisense RNAs. The condition-dependent collaborations and competitions between these different classes of posttranscriptional regulators reveal a critical layer of control for gene expression. SUMMARY: Taken together, these findings bear significant diagnostic and therapeutic implications for vascular disease.
Assuntos
Hipóxia Celular/genética , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , HumanosRESUMO
Proximal promoter DNA methylation has been shown to be important for regulating gene expression. However, its relative contribution to the cell-specific expression of endothelial cell (EC)-enriched genes has not been defined. We used methyl-DNA immunoprecipitation and bisulfite conversion to analyze the DNA methylation profile of EC-enriched genes in ECs vs nonexpressing cell types, both in vitro and in vivo. We show that prototypic EC-enriched genes exhibit functional differential patterns of DNA methylation in proximal promoter regions of most (eg, CD31, von Willebrand factor [vWF], VE-cadherin, and intercellular adhesion molecule-2), but not all (eg, VEGFR-1 and VEGFR-2), EC-enriched genes. Comparable findings were evident in cultured ECs, human blood origin ECs, and murine aortic ECs. Promoter-reporter episomal transfection assays for endothelial nitric oxide synthase, VE-cadherin, and vWF indicated functional promoter activity in cell types where the native gene was not active. Inhibition of DNA methyltransferase activity indicated important functional relevance. Importantly, profiling DNA replication timing patterns indicated that EC-enriched gene promoters with differentially methylated regions replicate early in S-phase in both expressing and nonexpressing cell types. Collectively, these studies highlight the functional importance of promoter DNA methylation in controlling vascular EC gene expression.
Assuntos
Metilação de DNA , Período de Replicação do DNA , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fase S/fisiologia , Animais , Antígenos CD/genética , Aorta/citologia , Aorta/metabolismo , Caderinas/genética , Bovinos , Moléculas de Adesão Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Derme/citologia , Derme/metabolismo , Endotélio Vascular/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Fator de von Willebrand/genéticaRESUMO
Tissue hypoxia likely contributes to anemia-induced organ injury and mortality. Severe anemia activates hypoxia-inducible factor (HIF) signaling by hypoxic- and neuronal nitric oxide (NO) synthase- (nNOS) dependent mechanisms. However, organ-specific hemoglobin (Hb) thresholds for increased HIF expression have not been defined. To assess organ-specific Hb thresholds for tissue hypoxia, HIF-α (oxygen-dependent degradation domain, ODD) luciferase mice were hemodiluted to mild, moderate, or severe anemia corresponding to Hb levels of 90, 70, and 50 g/l, respectively. HIF luciferase reporter activity, HIF protein, and HIF-dependent RNA levels were assessed. In the brain, HIF-1α was paradoxically decreased at mild anemia, returned to baseline at moderate anemia, and then increased at severe anemia. Brain HIF-2α remained unchanged at all Hb levels. Both kidney HIF-1α and HIF-2α increased earlier (Hb â¼70-90 g/l) in response to anemia. Liver also exhibited an early HIF-α response. Carotid blood flow was increased early (Hb â¼70, g/l), but renal blood flow remained relatively constant, only increased at Hb of 50 g/l. Anemia increased nNOS (brain and kidney) and endothelia NOS (eNOS) (kidney) levels. Whereas anemia-induced increases in brain HIFα were nNOS-dependent, our current data demonstrate that increased renal HIFα was nNOS independent. HIF-dependent RNA levels increased linearly (â¼10-fold) in the brain. However, renal HIF-RNA responses (MCT4, EPO) increased exponentially (â¼100-fold). Plasma EPO levels increased near Hb threshold of 90 g/l, suggesting that the EPO response is sensitive. Collectively, these observations suggest that each organ expresses a different threshold for cellular HIF/NOS hypoxia responses. This knowledge may help define the mechanism(s) by which the brain and kidney maintain oxygen homeostasis during anemia.
Assuntos
Anemia/enzimologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hemoglobinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Doença Aguda , Anemia/sangue , Anemia/etiologia , Anemia/genética , Anemia/fisiopatologia , Animais , Biomarcadores/sangue , Encéfalo/irrigação sanguínea , Encéfalo/enzimologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Eritropoetina/metabolismo , Hemodiluição , Hemodinâmica , Humanos , Hipóxia/sangue , Hipóxia/etiologia , Hipóxia/genética , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Rim/irrigação sanguínea , Rim/enzimologia , Fígado/irrigação sanguínea , Fígado/enzimologia , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Camundongos , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Circulação Renal , Índice de Gravidade de DoençaRESUMO
Adult bone marrow-derived cells can improve organ function in chronic disease models, ostensibly by the release of paracrine factors. It has, however, been difficult to reconcile this prevailing paradigm with the lack of cell retention within injured organs and their rapid migration to the reticuloendothelial system. Here, we provide evidence that the salutary antifibrotic effects of bone marrow-derived early outgrowth cells (EOCs) are more consistent with an endocrine mode of action, demonstrating not only the presence of antifibrotic factors in the plasma of EOC-treated rats but also that EOC conditioned medium (EOC-CM) potently attenuates both TGF-ß- and angiotensin II-induced fibroblast collagen production in vitro. To examine the therapeutic relevance of these findings in vivo, 5/6 subtotally nephrectomized rats, a model of chronic kidney and heart failure characterized by progressive fibrosis of both organs, were randomized to receive i.v. injections of EOC-CM, unconditioned medium, or 10(6) EOCs. Rats that received unconditioned medium developed severe kidney injury with cardiac diastolic dysfunction. In comparison, EOC-CM-treated rats demonstrated substantially improved renal and cardiac function and structure, mimicking the changes found in EOC-treated animals. Mass spectrometric analysis of EOC-CM identified proteins that regulate cellular functions implicated in fibrosis. These results indicate that EOCs secrete soluble factor(s) with highly potent antifibrotic activity, that when injected intravenously replicate the salutary effects of the cells themselves. Together, these findings suggest that an endocrine mode of action may underlie the effectiveness of cell therapy in certain settings and portend the possibility for systemic delivery of cell-free therapy.
Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Fibrose/cirurgia , Células-Tronco Mesenquimais/metabolismo , Insuficiência Renal Crônica/cirurgia , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose/patologia , Citometria de Fluxo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/cirurgia , Humanos , Rim/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Fagocitose , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Insuficiência Renal Crônica/patologiaRESUMO
Cells sense and respond to changes in oxygen concentration through gene regulatory processes that are fundamental to survival. Surprisingly, little is known about how anemia affects hypoxia signaling. Because nitric oxide synthases (NOSs) figure prominently in the cellular responses to acute hypoxia, we defined the effects of NOS deficiency in acute anemia. In contrast to endothelial NOS or inducible NOS deficiency, neuronal NOS (nNOS)(-/-) mice demonstrated increased mortality during anemia. Unlike wild-type (WT) animals, anemia did not increase cardiac output (CO) or reduce systemic vascular resistance (SVR) in nNOS(-/-) mice. At the cellular level, anemia increased expression of HIF-1α protein and HIF-responsive mRNA levels (EPO, VEGF, GLUT1, PDK1) in the brain of WT, but not nNOS(-/-) mice, despite comparable reductions in tissue PO(2). Paradoxically, nNOS(-/-) mice survived longer during hypoxia, retained the ability to regulate CO and SVR, and increased brain HIF-α protein levels and HIF-responsive mRNA transcripts. Real-time imaging of transgenic animals expressing a reporter HIF-α(ODD)-luciferase chimeric protein confirmed that nNOS was essential for anemia-mediated increases in HIF-α protein stability in vivo. S-nitrosylation effects the functional interaction between HIF and pVHL. We found that anemia led to nNOS-dependent S-nitrosylation of pVHL in vivo and, of interest, led to decreased expression of GSNO reductase. These findings identify nNOS effects on the HIF/pVHL signaling pathway as critically important in the physiological responses to anemia in vivo and provide essential mechanistic insight into the differences between anemia and hypoxia.
Assuntos
Anemia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Adaptação Fisiológica , Anemia/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Débito Cardíaco , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Oxigênio/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Resistência Vascular , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
Escherichia coli O157:H7-associated hemolytic-uremic syndrome (HUS) is characterized by profound prothrombotic abnormalities. Endothelial dysfunction, manifested as dysregulation of angiopoietins 1 and 2 (Ang-1/2), could underlie HUS pathophysiology. We measured Ang-1/2 in 77 children with E. coli O157:H7 infection. Ang-1, Ang-2, and the Ang-2/Ang-1 ratio were significantly different in HUS vs the pre-HUS phase of illness or uncomplicated infection. Angiopoietin dysregulation preceded HUS and worsened as HUS developed. In vitro exposure of human microvascular endothelial cells to Shiga toxin recapitulated the in vivo observations. Angiopoietin regulation is profoundly affected before and during HUS, reflecting that subclinical endothelial dysfunction precedes overt microangiopathy.
Assuntos
Angiopoietina-1/sangue , Angiopoietina-2/sangue , Infecções por Escherichia coli/sangue , Escherichia coli O157 , Síndrome Hemolítico-Urêmica/sangue , Células Cultivadas , Criança , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Estudos Prospectivos , Toxina ShigaRESUMO
The processes by which cells sense and respond to ambient oxygen concentration are fundamental to cell survival and function, and they commonly target gene regulatory events. To date, however, little is known about the link between the microRNA pathway and hypoxia signaling. Here, we show in vitro and in vivo that chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global consequences on microRNA biogenesis. We show that von Hippel-Lindau-dependent down-regulation of Dicer is key to the expression and function of hypoxia-inducible factor α (HIF-α) subunits. Specifically, we show that EPAS1/HIF-2α is regulated by the Dicer-dependent microRNA miR-185, which is down-regulated by hypoxia. Full expression of hypoxia-responsive/HIF target genes in chronic hypoxia (e.g. VEGFA, FLT1/VEGFR1, KDR/VEGFR2, BNIP3L, and SLC2A1/GLUT1), the function of which is to regulate various adaptive responses to compromised oxygen availability, is also dependent on hypoxia-mediated down-regulation of Dicer function and changes in post-transcriptional gene regulation. Therefore, functional deficiency of Dicer in chronic hypoxia is relevant to both HIF-α isoforms and hypoxia-responsive/HIF target genes, especially in the vascular endothelium. These findings have relevance to emerging therapies given that we show that the efficacy of RNA interference under chronic hypoxia, but not normal oxygen availability, is Dicer-dependent. Collectively, these findings show that the down-regulation of Dicer under chronic hypoxia is an adaptive mechanism that serves to maintain the cellular hypoxic response through HIF-α- and microRNA-dependent mechanisms, thereby providing an essential mechanistic insight into the oxygen-dependent microRNA regulatory pathway.
Assuntos
Adaptação Fisiológica/fisiologia , RNA Helicases DEAD-box/biossíntese , Endotélio Vascular/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Ribonuclease III/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , RNA Helicases DEAD-box/genética , Endotélio Vascular/citologia , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 1/genética , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Ribonuclease III/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
BACKGROUND: MicroRNA are essential posttranscriptional modulators of gene expression implicated in various chronic diseases. Because microRNA-145 is highly expressed in vascular smooth muscle cells (VSMC) and regulates VSMC fate and plasticity, we hypothesized that it may be a novel regulator of atherosclerosis and plaque stability. METHODS AND RESULTS: Apolipoprotein E knockout mice (ApoE(-/-)) mice were treated with either a microRNA-145 lentivirus under the control of the smooth muscle cell (SMC)-specific promoter SM22α or a SM22α control lentivirus before commencing the Western diet for 12 weeks. The SMC-targeted microRNA-145 treatment markedly reduced plaque size in aortic sinuses, ascending aortas, and brachiocephalic arteries. It also significantly increased fibrous cap area, reduced necrotic core area, and increased plaque collagen content. Cellular plaque composition analyses revealed significantly less macrophages in ApoE(-/-) mice treated with the SMC-specific microRNA-145. These mice also demonstrated marked increases in calponin levels and α-smooth muscle actin-positive SMC areas in their atherosclerotic lesions. Furthermore, lentiviral delivery of microRNA-145 resulted in reduced KLF4 and elevated myocardin expression in aortas from ApoE(-/-) mice, consistent with an effect of microRNA-145 to promote a contractile phenotype in VSMC. CONCLUSIONS: VSMC-specific overexpression of microRNA-145 is a novel in vivo therapeutic target to limit atherosclerotic plaque morphology and cellular composition, shifting the balance toward plaque stability vs plaque rupture.
Assuntos
Aterosclerose/prevenção & controle , Terapia Genética , Vetores Genéticos/uso terapêutico , MicroRNAs/fisiologia , Actinas/genética , Animais , Aorta/citologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Artérias Carótidas/metabolismo , Células Cultivadas , Dieta Aterogênica , Genes Reporter , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Lentivirus/genética , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/fisiologia , Transdução GenéticaRESUMO
Rapidly progressive glomerulonephritis (RPGN) is a clinical syndrome characterized by loss of renal function within days to weeks and by glomerular crescents on biopsy. The pathogenesis of this disease is unclear, but circulating factors are believed to have a major role. Here, we show that deletion of the Von Hippel-Lindau gene (Vhlh) from intrinsic glomerular cells of mice is sufficient to initiate a necrotizing crescentic glomerulonephritis and the clinical features that accompany RPGN. Loss of Vhlh leads to stabilization of hypoxia-inducible factor alpha subunits (HIFs). Using gene expression profiling, we identified de novo expression of the HIF target gene Cxcr4 (ref. 3) in glomeruli from both mice and humans with RPGN. The course of RPGN is markedly improved in mice treated with a blocking antibody to Cxcr4, whereas overexpression of Cxcr4 alone in podocytes of transgenic mice is sufficient to cause glomerular disease. Collectively, these results indicate an alternative mechanism for the pathogenesis of RPGN and glomerular disease in an animal model and suggest novel molecular pathways for intervention in this disease.
Assuntos
Glomerulonefrite/fisiopatologia , Glomérulos Renais/metabolismo , Receptores CXCR4/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Perfilação da Expressão Gênica , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Podócitos/citologia , Podócitos/metabolismo , Regulação para CimaRESUMO
Epigenetic changes in gene expression play a role in the development of diabetic complications, including nephropathy. Histone deacetylases (HDACs) are a group of enzymes that exert epigenetic effects by altering the acetylation status of histone and nonhistone proteins. In the current study, we investigated the action of the clinically available HDAC inhibitor vorinostat in a mouse model of diabetic nephropathy, with the following aims: to define its effect on the progression of renal injury and to explore its mechanism of action by focusing on its role in regulating the expression of endothelial nitric oxide synthase (eNOS). Control and streptozotocin-diabetic wild-type and eNOS(-/-) mice were treated with vorinostat by daily oral dosing for 18 weeks. Without affecting either blood glucose concentration or blood pressure, vorinostat decreased albuminuria, mesangial collagen IV deposition, and oxidative-nitrosative stress in streptozotocin-wild-type mice. These attenuating effects were associated with a >50% reduction in eNOS expression in mouse kidneys and in cultured human umbilical vein endothelial cells. Vorinostat treatment had no effect on albuminuria, glomerular collagen IV concentration, or mesangiolysis in diabetic mice genetically deficient in eNOS. These observations illustrate the therapeutic efficacy of long-term HDAC inhibition in diabetic nephropathy and emphasize the importance of the interplay between eNOS activity and oxidative stress in mediating these effects.
Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Western Blotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , VorinostatRESUMO
PURPOSE OF REVIEW: Diarrhea-associated hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC) continues to be an important public health threat worldwide. Specific therapies are lacking and patient care remains largely supportive. This review discusses the lessons learned from recent events and summarizes key advances made toward understanding the basic mechanisms involved in the pathogenesis of typical HUS. RECENT FINDINGS: The recent German outbreak of a hybrid organism resulted in an unprecedented number of HUS cases and drastically changed the face of typical (diarrhea-associated) HUS. New findings on the roles of complement and the CXCR4/SDF-1 pathway in HUS pathogenesis are summarized and novel therapeutic strategies are highlighted. SUMMARY: A better understanding of STEC-mediated HUS underlies improved therapeutic approaches. New studies of the mechanistic basis of the disease, together with patient-based studies, have led to key findings with important clinical implications.
Assuntos
Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/microbiologia , Toxinas Shiga/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade , Animais , Quimiocina CXCL12/metabolismo , Ativação do Complemento , Diarreia/imunologia , Diarreia/terapia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/terapia , Genótipo , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/terapia , Humanos , Fenótipo , Receptores CXCR4/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/imunologia , Escherichia coli Shiga Toxigênica/metabolismo , Transdução de SinaisRESUMO
For patients and caregivers to be fully informed about how living organ donation or prior kidney injury affects future health, we need to better understand the role of kidney reserve in physiological adaptation, especially during pregnancy. Importantly, epidemiological studies reason that live kidney donors are at increased risk for developing preeclampsia, a hypertensive disorder of pregnancy with serious implications for maternal and fetal health. Despite the import of this finding, the mechanistic basis for this increased risk is not understood. In this issue of the JCI, Dupont, Berg, and co-authors provide strong evidence that impaired placental perfusion, placental ischemia, increased soluble fms-like tyrosine kinase 1 (sFLT1), and a maternal preeclampsia-like phenotype are associated with an inability to upregulate the l-tryptophan-derived l-kynurenine pathway during pregnancy in mice with blunted renal reserve. These surprising revelations underscore the curious quiddity of l-tryptophan.
Assuntos
Pré-Eclâmpsia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Feminino , Humanos , Cinurenina/metabolismo , Camundongos , Placenta/metabolismo , Fator de Crescimento Placentário , Pré-Eclâmpsia/metabolismo , Gravidez , Triptofano/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Angiogenesis is a critical process in tumor progression. Inhibition of angiogenesis by blocking VEGF signaling can impair existing tumor vessels and halt tumor progression. However, the benefits are transient, and most patients who initially respond to these therapies develop resistance. Accordingly, there is a need for new anti-angiogenesis therapeutics to delay the processes of resistance or eliminate the resistive effects entirely. This manuscript presents the results of a screen of the National Institutes of Health Clinical Collections Libraries I & II (NIHCCLI&II) for novel angiogenesis inhibitors. The 727 compounds of the NIHCCLI&II library were screened with a high-throughput drug discovery platform (HTP) developed previously with angiogenesis-specific protocols utilizing zebrafish. The screen resulted in 14 hit compounds that were subsequently narrowed down to one, with PD 81,723 chosen as the lead compound. PD 81,723 was validated as an inhibitor of angiogenesis in vivo in zebrafish and in vitro in human umbilical vein endothelial cells (HUVECs). Zebrafish exposed to PD 81,723 exhibited several signs of a diminished endothelial network due to the inhibition of angiogenesis. Immunochemical analysis did not reveal any significant apoptotic or mitotic activity in the zebrafish. Assays with cultured HUVECs elucidated the ability of PD 81,723 to inhibit capillary tube formation, migration, and proliferation of endothelial cells. In addition, PD 81,723 did not induce apoptosis while significantly down regulating p21, AKT, VEGFR-2, p-VEGFR-2, eNOS, and p-eNOS, with no notable change in endogenous VEGF-A in cultured HUVECs.