Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geophys Res Lett ; 44(3): 1554-1563, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28344367

RESUMO

Very sparse data have previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively driven water vapor transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day's convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmosphere.

2.
Geophys Res Lett ; 42(19): 8208-8215, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-27667872

RESUMO

Dust uplift is a nonlinear thresholded function of wind speed and therefore particularly sensitive to the long tails of observed wind speed probability density functions. This suggests that a few rare high-wind events can contribute substantially to annual dust emission. Here we quantify the relative roles of different wind speeds to dust-generating winds using surface synoptic observations of dust emission and wind from northern Africa. The results show that winds between 2 and 5 m s-1 above the threshold cause the most emission. Of the dust-generating winds, 25% is produced by very rare events occurring only at 0.1 to 1.4% of the time, depending on the region. Dust-producing winds are underestimated in ERA-I, since it misses the long tail found in observations. ERA-I overpredicts (underpredicts) the frequency of emission strength winds in the southern (northern) regions. These problems cannot be solved by simple tunings. Finally, we show that rare events make the largest contribution to interannual variability in dust-generating winds and that ERA severely underestimates this interannual variability.

3.
Geophys Res Lett ; 42(4): 1275-1282, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26681815

RESUMO

Dust devils and nonrotating dusty plumes are effective uplift mechanisms for fine particles, but their contribution to the global dust budget is uncertain. By applying known bulk thermodynamic criteria to European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, we provide the first global hourly climatology of potential dust devil and dusty plume (PDDP) occurrence. In agreement with observations, activity is highest from late morning into the afternoon. Combining PDDP frequencies with dust source maps and typical emission values gives the best estimate of global contributions of 3.4% (uncertainty 0.9-31%), 1 order of magnitude lower than the only estimate previously published. Total global hours of dust uplift by dry convection are ∼0.002% of the dust-lifting winds resolved by ECMWF, consistent with dry convection making a small contribution to global uplift. Reducing uncertainty requires better knowledge of factors controlling PDDP occurrence, source regions, and dust fluxes induced by dry convection. KEY POINTS: Global potential dust devil occurrence quantified from meteorological analyses Climatology shows realistic diurnal cycle and geographical distribution Best estimate of global contribution of 3.4% is 10 times smaller than the previous estimate.

4.
Geophys Res Lett ; 40(9): 1868-1872, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-25821264

RESUMO

[1] Since the 1980s, a dramatic downward trend in North African dustiness and transport to the tropical Atlantic Ocean has been observed by different data sets and methods. The precise causes of this trend have previously been difficult to understand, partly due to the sparse observational record. Here we show that a decrease in surface wind speeds associated with increased roughness due to more vegetation in the Sahel is the most likely cause of the observed drop in dust emission. Associated changes in turbulence and evapotranspiration, and changes in large-scale circulation, are secondary contributors. Past work has tried to explain negative correlations between North African dust and precipitation through impacts on emission thresholds due to changes in soil moisture and vegetation cover. The use of novel diagnostic tools applied here to long-term surface observations suggests that this is not the dominating effect. Our results are consistent with a recently observed global decrease in surface wind speed, known as "stilling", and demonstrate the importance of representing vegetation-related roughness changes in models. They also offer a new mechanism of how land-use change and agriculture can impact the Sahelian climate. Citation: Cowie, S. M., P. Knippertz, and J. H. Marsham (2013), Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel?, Geophys. Res. Lett., 40, 1868-1872, doi:10.1002/grl.50273.

5.
Plant Environ Interact ; 4(3): 134-145, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37362421

RESUMO

This study assessed the sensitivity of the West African climate to varying vegetation fractions. The assessment of a such relationship is critical in understanding the interactions between land surface and atmosphere. Two sets of convection-permitting simulations from the UK Met Office Unified Model at 12 km horizontal resolution covering the monsoon period May-September (MJJAS) were used, one with fixed vegetation fraction (MF-V) and the other with time-varying vegetation fraction (MV-V). Vegetation fractions are based on MODIS retrievals between May and September. We focused on three climatic zones over West Africa: Guinea Coast, Sudanian Sahel, and the Sahel while investigating heat fluxes, temperature, and evapotranspiration. Results reveal that latent heat fluxes are the most strongly affected by vegetation fraction over the Sahelian and Sudanian regions while sensible heat fluxes are more impacted over the Guinea Coast and Sudanian Sahel. Also, in MV-V simulation there is an increase in evapotranspiration mainly over the Sahel and some specific areas in Guinea Coast from June to September. Moreover, it is noticed that high near-surface temperature is associated with a weak vegetation fraction, especially during May and June. Finally, varying vegetation seems to improve the simulation of surface energy fluxes and in turn impact on climate parameters. This suggests that climate modelers should prioritize the use of varying vegetation options to improve the representation of the West African climate system.

6.
Nat Commun ; 10(1): 1794, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015416

RESUMO

African society is particularly vulnerable to climate change. The representation of convection in climate models has so far restricted our ability to accurately simulate African weather extremes, limiting climate change predictions. Here we show results from climate change experiments with a convection-permitting (4.5 km grid-spacing) model, for the first time over an Africa-wide domain (CP4A). The model realistically captures hourly rainfall characteristics, unlike coarser resolution models. CP4A shows greater future increases in extreme 3-hourly precipitation compared to a convection-parameterised 25 km model (R25). CP4A also shows future increases in dry spell length during the wet season over western and central Africa, weaker or not apparent in R25. These differences relate to the more realistic representation of convection in CP4A, and its response to increasing atmospheric moisture and stability. We conclude that, with the more accurate representation of convection, projected changes in both wet and dry extremes over Africa may be more severe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA