Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(23): e113714, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916875

RESUMO

Primary Sjögren's syndrome (pSS) is an inflammatory autoimmune disorder largely mediated by type I and II interferon (IFN). The potential contribution of innate immune cells, such as natural killer (NK) cells and dendritic cells (DC), to the pSS pathology remains understudied. Here, we identified an enriched CD16+ CD56hi NK cell subset associated with higher cytotoxic function, as well as elevated proportions of inflammatory CD64+ conventional dendritic cell (cDC2) subtype that expresses increased levels of MICa/b, the ligand for the activating receptor NKG2D, in pSS individuals. Circulating cDC2 from pSS patients efficiently induced activation of cytotoxic NK cells ex vivo and were found in proximity to CD56+ NK cells in salivary glands (SG) from pSS patients. Interestingly, transcriptional activation of IFN signatures associated with the RIG-I/DDX60 pathway, IFN I receptor, and its target genes regulate the expression of NKG2D ligands on cDC2 from pSS patients. Finally, increased proportions of CD64hi RAE-1+ cDC2 and NKG2D+ CD11b+ CD27+ NK cells were present in vivo in the SG after poly I:C injection. Our study provides novel insight into the contribution and interplay of NK and cDC2 in pSS pathology and identifies new potential therapy targets.


Assuntos
Autoimunidade , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais , Células Dendríticas
2.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683377

RESUMO

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


Assuntos
Linfócitos B , Interferon Tipo I , Transdução de Sinais , Baço , TYK2 Quinase , Receptor 7 Toll-Like , Animais , Camundongos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Interferon Tipo I/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/citologia , Baço/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/genética
3.
Clin Immunol ; 264: 110267, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825071

RESUMO

Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19 , Interferon gama , Receptores CCR6 , Receptores CXCR3 , SARS-CoV-2 , Humanos , Receptores CCR6/imunologia , Receptores CCR6/metabolismo , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Linfócitos T CD4-Positivos/imunologia , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , SARS-CoV-2/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto
4.
Clin Infect Dis ; 76(3): e155-e162, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869848

RESUMO

BACKGROUND: Immune dysregulation in individuals with Down syndrome (DS) leads to an increased risk for hospitalization and death due to coronavirus disease 2019 (COVID-19) and may impair the generation of protective immunity after vaccine administration. METHODS: The cellular and humoral responses of 55 individuals with DS who received a complete SARS-CoV-2 vaccination regime at 1 to 3 (visit [V 1]) and 6 (V2) months were characterized. RESULTS: SARS-CoV-2-reactive CD4+ and CD8+ T lymphocytes with a predominant Th1 phenotype were observed at V1 and increased at V2. Likewise, an increase in SARS-CoV-2-specific circulating Tfh (cTfh) cells and CD8+ CXCR5+ PD-1hi lymphocytes was already observed at V1 after vaccine administration. Specific immunoglobulin G (IgG) antibodies against SARS-CoV-2 S protein were detected in 96% and 98% of subjects at V1 and V2, respectively, although IgG titers decreased significantly between both time points. CONCLUSIONS: Our findings show that DS individuals develop an effective immune response to usual regimes of SARS-CoV-2 vaccination.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Síndrome de Down , Síndrome de Quebra de Nijmegen , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade , Imunoglobulina G , SARS-CoV-2 , Vacinação , Adulto
5.
Clin Immunol ; 256: 109806, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827267

RESUMO

The study of phenotypic and functional characteristics of immune cells involved in host response to SARS-CoV-2 is relevant for understanding COVID-19 pathogenesis and individual differences in disease progression. We have analyzed chemokine receptor expression in SARS-CoV-2-specific CD4+ T lymphocytes from vaccinated donors, and have found an increase of CCR9+ and CCR6+ cells. CCR9+ specific CD4+ cells are enriched in T regulatory (Treg) lymphocytes. These cells specifically show heterogeneous regulatory activity, associated with different profiles of CCR9/CCR6 expression, individual differences in IL-10 and IL-17 production, and variable FoxP3 and Notch4 expression. A higher heterogeneity in FoxP3 is selectively observed in convalescent individuals within vaccinated population. Accordingly, SARS-CoV-2-specific CD4+ lymphocytes from COVID-19 patients are also enriched in CCR9+ and CCR6+ cells. CCR6+ specific Treg lymphocytes are mainly increased in critically ill individuals, indicating a preferential role for these cells in lung injury pathogenesis. We provide experimental evidence for a SARS-CoV-2-specific Treg population with increased plasticity, which may contribute to the differential pathogenic response against SARS-CoV-2 among individuals, and underlie the development of autoimmune conditions following SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Linfócitos T CD4-Positivos , Receptores de Quimiocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores
6.
Eur J Immunol ; 52(3): 447-461, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935145

RESUMO

Effective function of CD8+ T cells and enhanced innate activation of DCs in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8+ T-cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFN-ß expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8+ T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4+ T-cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to LN, and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with PolyI:C and STING agonists might be useful for future HIV-1 vaccine studies.


Assuntos
Vacinas contra a AIDS , HIV-1 , Vacinas contra a AIDS/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Dendríticas , Proteína do Núcleo p24 do HIV/metabolismo , Tecido Linfoide , Camundongos , Poli I-C/farmacologia
7.
Eur J Immunol ; 51(3): 634-647, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251605

RESUMO

SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID-19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID-19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56- CD16+ NK-cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID-19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.


Assuntos
Linfócitos B/imunologia , COVID-19/patologia , Imunoglobulinas/sangue , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Idoso , COVID-19/imunologia , Complemento C3/análise , Complemento C4/análise , Complemento C5/análise , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Contagem de Linfócitos , Linfopenia/imunologia , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
8.
J Allergy Clin Immunol ; 147(1): 72-80.e8, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010257

RESUMO

BACKGROUND: Patients with coronavirus disaese 2019 (COVID-19) can develop a cytokine release syndrome that eventually leads to acute respiratory distress syndrome requiring invasive mechanical ventilation (IMV). Because IL-6 is a relevant cytokine in acute respiratory distress syndrome, the blockade of its receptor with tocilizumab (TCZ) could reduce mortality and/or morbidity in severe COVID-19. OBJECTIVE: We sought to determine whether baseline IL-6 serum levels can predict the need for IMV and the response to TCZ. METHODS: A retrospective observational study was performed in hospitalized patients diagnosed with COVID-19. Clinical information and laboratory findings, including IL-6 levels, were collected approximately 3 and 9 days after admission to be matched with preadministration and postadministration of TCZ. Multivariable logistic and linear regressions and survival analysis were performed depending on outcomes: need for IMV, evolution of arterial oxygen tension/fraction of inspired oxygen ratio, or mortality. RESULTS: One hundred forty-six patients were studied, predominantly males (66%); median age was 63 years. Forty-four patients (30%) required IMV, and 58 patients (40%) received treatment with TCZ. IL-6 levels greater than 30 pg/mL was the best predictor for IMV (odds ratio, 7.1; P < .001). Early administration of TCZ was associated with improvement in oxygenation (arterial oxygen tension/fraction of inspired oxygen ratio) in patients with high IL-6 (P = .048). Patients with high IL-6 not treated with TCZ showed high mortality (hazard ratio, 4.6; P = .003), as well as those with low IL-6 treated with TCZ (hazard ratio, 3.6; P = .016). No relevant serious adverse events were observed in TCZ-treated patients. CONCLUSIONS: Baseline IL-6 greater than 30 pg/mL predicts IMV requirement in patients with COVID-19 and contributes to establish an adequate indication for TCZ administration.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , Interleucina-6/sangue , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/mortalidade , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida
9.
PLoS Pathog ; 11(6): e1004930, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26067651

RESUMO

The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunidade Celular/imunologia , Western Blotting , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Teste de Cultura Mista de Linfócitos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno
10.
Curr HIV/AIDS Rep ; 14(1): 1-7, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28110421

RESUMO

PURPOSE OF REVIEW: Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. RECENT FINDINGS: Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1 , Humanos
11.
PLoS Genet ; 10(3): e1004196, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603468

RESUMO

Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10(-2)). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10(-11)-10(-9)) and African (p = 10(-5)-10(-3)) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement.


Assuntos
Infecções por HIV/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Inata/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Alelos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Feminino , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Carga Viral/genética , Carga Viral/imunologia
12.
J Immunol ; 193(10): 5181-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25326025

RESUMO

Intravenous Igs (IVIg) therapy is widely used as an immunomodulatory strategy in inflammatory pathologies and is suggested to promote cancer regression. Because progression of tumors depends on their ability to redirect the polarization state of tumor-associated macrophages (from M1/immunogenic/proinflammatory to M2/anti-inflammatory), we have evaluated whether IVIg limits tumor progression and dissemination through modulation of macrophage polarization. In vitro, IVIg inhibited proinflammatory cytokine production from M1 macrophages and induced a M2-to-M1 polarization switch on human and murine M2 macrophages. In vivo, IVIg modified the polarization of tumor-associated myeloid cells in a Fcεr1γ chain-dependent manner, modulated cytokine blood levels in tumor-bearing animals, and impaired tumor progression via FcγRIII (CD16), FcγRIV, and FcRγ engagement, the latter two effects being macrophage mediated. Therefore, IVIg immunomodulatory activity is dependent on the polarization state of the responding macrophages, and its ability to trigger a M2-to-M1 macrophage polarization switch might be therapeutically useful in cancer, in which proinflammatory or immunogenic functions should be promoted.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Imunoglobulinas Intravenosas/farmacologia , Fatores Imunológicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Macrófagos/classificação , Macrófagos/imunologia , Macrófagos/patologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Transplante de Neoplasias , Receptores de IgE/genética , Receptores de IgE/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos
13.
J Virol ; 88(17): 10056-65, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965451

RESUMO

UNLABELLED: Initiation of antiretroviral therapy during the earliest stages of HIV-1 infection may limit the seeding of a long-lasting viral reservoir, but long-term effects of early antiretroviral treatment initiation remain unknown. Here, we analyzed immunological and virological characteristics of nine patients who started antiretroviral therapy at primary HIV-1 infection and remained on suppressive treatment for >10 years; patients with similar treatment duration but initiation of suppressive therapy during chronic HIV-1 infection served as controls. We observed that independently of the timing of treatment initiation, HIV-1 DNA in CD4 T cells decayed primarily during the initial 3 to 4 years of treatment. However, in patients who started antiretroviral therapy in early infection, this decay occurred faster and was more pronounced, leading to substantially lower levels of cell-associated HIV-1 DNA after long-term treatment. Despite this smaller size, the viral CD4 T cell reservoir in persons with early treatment initiation consisted more dominantly of the long-lasting central-memory and T memory stem cells. HIV-1-specific T cell responses remained continuously detectable during antiretroviral therapy, independently of the timing of treatment initiation. Together, these data suggest that early HIV-1 treatment initiation, even when continued for >10 years, is unlikely to lead to viral eradication, but the presence of low viral reservoirs and durable HIV-1 T cell responses may make such patients good candidates for future interventional studies aiming at HIV-1 eradication and cure. IMPORTANCE: Antiretroviral therapy can effectively suppress HIV-1 replication to undetectable levels; however, HIV-1 can persist despite treatment, and viral replication rapidly rebounds when treatment is discontinued. This is mainly due to the presence of latently infected CD4 T cells, which are not susceptible to antiretroviral drugs. Starting treatment in the earliest stages of HIV-1 infection can limit the number of these latently infected cells, raising the possibility that these viral reservoirs are naturally eliminated if suppressive antiretroviral treatment is continued for extremely long periods of time. Here, we analyzed nine patients who started on antiretroviral therapy within the earliest weeks of the disease and continued treatment for more than 10 years. Our data show that early treatment accelerated the decay of infected CD4 T cells and led to very low residual levels of detectable HIV-1 after long-term therapy, levels that were otherwise detectable in patients who are able to maintain a spontaneous, drug-free control of HIV-1 replication. Thus, long-term antiretroviral treatment started during early infection cannot eliminate HIV-1, but the reduced reservoirs of HIV-1 infected cells in such patients may increase their chances to respond to clinical interventions aiming at inducing a drug-free remission of HIV-1 infection.


Assuntos
Antirretrovirais/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Adulto , Estudos de Coortes , DNA Viral/análise , DNA Viral/genética , Feminino , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
14.
Nat Commun ; 15(1): 2100, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453949

RESUMO

Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.


Assuntos
COVID-19 , Inflamassomos , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , COVID-19/patologia , Inflamassomos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleoproteínas/metabolismo , SARS-CoV-2/metabolismo
15.
Cell Rep Med ; 4(10): 101202, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37741278

RESUMO

Human immunodeficiency virus (HIV) infection induces immunological dysfunction, which limits the elimination of HIV-infected cells during treated infection. Identifying and targeting dysfunctional immune cells might help accelerate the purging of the persistent viral reservoir. Here, we show that chronic HIV infection increases natural killer (NK) cell populations expressing the negative immune regulator KLRG1, both in peripheral blood and lymph nodes. Antiretroviral treatment (ART) does not reestablish these functionally impaired NK populations, and the expression of KLRG1 correlates with active HIV transcription. Targeting KLRG1 with specific antibodies significantly restores the capacity of NK cells to kill HIV-infected cells, reactivates latent HIV present in CD4+ T cells co-expressing KLRG1, and reduces the intact HIV genomes in samples from ART-treated individuals. Our data support the potential use of immunotherapy against the KLRG1 receptor to impact the viral reservoir during HIV persistence.


Assuntos
Infecções por HIV , HIV-1 , Receptores Imunológicos , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Células Matadoras Naturais , Lectinas Tipo C/genética , Receptores Imunológicos/genética , Latência Viral
16.
Blood ; 115(26): 5366-75, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20357241

RESUMO

The generation of natural regulatory T cells (nTregs) is crucial for the establishment of immunologic self-tolerance and the prevention of autoimmunity. Still, the origin of nTregs and the mechanisms governing their differentiation within the thymus are poorly understood, particularly in humans. It was recently shown that conventional dendritic cells (cDCs) in human thymus were capable of inducing nTreg differentiation. However, the function of plasmacytoid DCs (pDCs), the other major subset of thymic DCs, remains unknown. Here we report that pDCs resident in the human thymus, when activated with CD40 ligand (CD40L) plus interleukin-3, efficiently promoted the generation of CD4(+)CD25(+)Foxp3(+) nTregs from autologous thymocytes. The progenitors of these nTregs were selectively found within CD4(+)CD8(+) thymocytes that had accomplished positive selection, as judged by their CD69(hi)TCR(hi) phenotype. Supporting the involvement of the CD40-CD40L pathway in pDC-induced nTreg generation, we show that positively selected CD4(+)CD8(+) progenitors specifically transcribed CD40L in vivo and up-regulated CD40L expression on T-cell receptor engagement, thereby promoting the activation of pDCs. Finally, evidence is provided that nTregs primed by pDCs displayed reciprocal interleukin-10/transforming growth factor-beta cytokine expression profiles compared with nTregs primed by cDCs. This functional diversity further supports a nonredundant tolerogenic role for thymic pDCs in the human thymus.


Assuntos
Ligante de CD40/imunologia , Células Dendríticas/imunologia , Interleucina-3/imunologia , Linfócitos T Reguladores/imunologia , Timo/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Pré-Escolar , Células Dendríticas/citologia , Fatores de Transcrição Forkhead/imunologia , Humanos , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfócitos T Reguladores/citologia
17.
Curr Opin HIV AIDS ; 17(5): 308-314, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938465

RESUMO

PURPOSE OF REVIEW: HIV-1 controller individuals represents a model that can be useful for the development of novel vaccines and therapies. Initial studies pointed to the involvement of improved adaptive immunity, however, new emerging evidence suggests the contribution of innate cells to effective antiviral responses in spontaneous controllers. Therefore, understanding the alterations on innate cell subsets might be crucial to develop new effective therapeutic strategies. RECENT FINDINGS: Among different innate immune cells, dendritic cell (DC) and natural killer (NK) cell are essential for effective antiviral responses. DC from controllers display improved innate detection of HIV-1 transcripts, higher induction of interferons, higher antigen presenting capacities and increased metabolism and higher capacities to induce polyfunctional CD8+ T-cell responses. Such properties have been mimicked by Toll-like receptor ligands and applied to DC-based immunotherapies in humans and in animal models. NK cells from controllers display higher expression of activating receptors promoting increased antibody-dependent cellular cytotoxicity (ADCC) and natural cytotoxicity activities. Neutralizing antibodies in combination with interleukin-15 superagonist or interferon-α can increase ADCC and cytotoxicity in NK cells from HIV-1 progressors. SUMMARY: Mimicking DC and NK cell innate profiles in controllers has become a promising strategy to step forward a novel efficient immunotherapy against the HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Citotoxicidade Celular Dependente de Anticorpos , Antivirais , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Imunidade Inata
18.
Front Immunol ; 13: 1017164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569826

RESUMO

Introduction: Spontaneous control of HIV-1 replication in the absence of anti-retroviral therapy (ART) naturally occurs in a small proportion of HIV-1-infected individuals known as elite controllers (EC), likely as a result of improved innate and adaptive immune mechanisms. Previous studies suggest that enhanced cytosolic immune recognition of HIV-1 reverse transcripts in conventional dendritic cells (mDC) from EC enables effective induction of antiviral effector T cell responses. However, the specific molecular circuits responsible for such improved innate recognition of HIV-1 in mDC from these individuals remain unknown. Results and methods: Here, we identified a subpopulation of EC whose mDC displayed higher baseline abilities to respond to intracellular HIV-1 dsDNA stimulation. A computational analysis of transcriptional signatures from such high responder EC, combined with functional studies, suggested cytosolic recognition of HIV-1 dsDNA by cGAS, combined with sensing of viral mRNA by RIG-I after polymerase III-mediated HIV-1 DNA transcription. Discussion: Together, our work identifies collaborative networks of innate sensing pathways that enhance cell-intrinsic abilities of mDC to induce antiviral innate responses against HIV-1; these observations might be useful for the therapeutic induction of effective antiviral immune responses.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Células Dendríticas , Nucleotidiltransferases/metabolismo , Antivirais
19.
Front Immunol ; 13: 946358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131943

RESUMO

Communication through cell-cell contacts and extracellular vesicles (EVs) enables immune cells to coordinate their responses against diverse types of pathogens. The function exerted by EVs in this context depends on the proteins and nucleic acids loaded into EVs, which elicit specific responses involved in the resolution of infection. Several mechanisms control protein and nucleic acid loading into EVs; in this regard, acetylation has been described as a mechanism of cellular retention during protein sorting to exosomes. HDAC6 is a deacetylase involved in the control of cytoskeleton trafficking, organelle polarity and cell migration, defense against Listeria monocytogenes (Lm) infection and other immune related functions. Here, we show that the protein content of dendritic cells (DCs) and their secreted EVs (DEVs) vary during Lm infection, is enriched in proteins related to antiviral functions compared to non-infected cells and depends on HDAC6 expression. Analyses of the post-translational modifications revealed an alteration of the acetylation and ubiquitination profiles upon Lm infection both in DC lysates and DEVs. Functionally, EVs derived from infected DCs upregulate anti-pathogenic genes (e.g. inflammatory cytokines) in recipient immature DCs, which translated into protection from subsequent infection with vaccinia virus. Interestingly, absence of Listeriolysin O in Lm prevents DEVs from inducing this anti-viral state. In summary, these data underscore a new mechanism of communication between bacteria-infected DC during infection as they alert neighboring, uninfected DCs to promote antiviral responses.


Assuntos
Vesículas Extracelulares , Listeria monocytogenes , Listeriose , Ácidos Nucleicos , Antivirais/metabolismo , Citocinas/metabolismo , Células Dendríticas , Vesículas Extracelulares/metabolismo , Humanos , Imunidade Inata , Ácidos Nucleicos/metabolismo
20.
EBioMedicine ; 81: 104090, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665682

RESUMO

BACKGROUND: Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. METHODS: We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. FINDINGS: HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1- cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. INTERPRETATION: Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. FUNDING: NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.


Assuntos
Infecções por HIV , HIV-1 , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Dendríticas , Infecções por HIV/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA