Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 32(9): 1894-1910, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34519346

RESUMO

The remedy of memory deficits has been inadequate, as all potential candidates studied thus far have shown limited to no effects and a search for an effective strategy is ongoing. Here, we show that an expression of RGS14414 in rat perirhinal cortex (PRh) produced long-lasting object recognition memory (ORM) enhancement and that this effect was mediated through the upregulation of 14-3-3ζ, which caused a boost in BDNF protein levels and increase in pyramidal neuron dendritic arborization and dendritic spine number. A knockdown of the 14-3-3ζ gene in rat or the deletion of the BDNF gene in mice caused complete loss in ORM enhancement and increase in BDNF protein levels and neuronal plasticity, indicating that 14-3-3ζ-BDNF pathway-mediated structural plasticity is an essential step in RGS14414-induced memory enhancement. We further observed that RGS14414 treatment was able to prevent deficits in recognition, spatial, and temporal memory, which are types of memory that are particularly affected in patients with memory dysfunctions, in rodent models of aging and Alzheimer's disease. These results suggest that 14-3-3ζ-BDNF pathway might play an important role in the maintenance of the synaptic structures in PRh that support memory functions and that RGS14414-mediated activation of this pathway could serve as a remedy to treat memory deficits.


Assuntos
Córtex Perirrinal , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Camundongos , Plasticidade Neuronal/fisiologia , Ratos , Roedores/metabolismo
2.
FASEB J ; 33(11): 11804-11820, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31365833

RESUMO

Memory deficits affect a large proportion of the human population and are associated with aging and many neurologic, neurodegenerative, and psychiatric diseases. Treatment of this mental disorder has been disappointing because all potential candidates studied thus far have failed to produce consistent effects across various types of memory and have shown limited to no effects on memory deficits. Here, we show that the promotion of neuronal arborization through the expression of the regulator of G-protein signaling 14 of 414 amino acids (RGS14414) not only induced robust enhancement of multiple types of memory but was also sufficient for the recovery of recognition, spatial, and temporal memory, which are kinds of episodic memory that are primarily affected in patients or individuals with memory dysfunction. We observed that a surge in neuronal arborization was mediated by up-regulation of brain-derived neurotrophic factor (BDNF) signaling and that the deletion of BDNF abrogated both neuronal arborization activation and memory enhancement. The activation of BDNF-dependent neuronal arborization generated almost 2-fold increases in synapse numbers in dendrites of pyramidal neurons and in neurites of nonpyramidal neurons. This increase in synaptic connections might have evoked reorganization within neuronal circuits and eventually supported an increase in the activity of such circuits. Thus, in addition to showing the potential of RGS14414 for rescuing memory deficits, our results suggest that a boost in circuit activity could facilitate memory enhancement and the reversal of memory deficits.-Masmudi-Martín, M., Navarro-Lobato, I., López-Aranda, M. F., Delgado, G., Martín-Montañez, E., Quiros-Ortega, M. E., Carretero-Rey, M., Narváez, L., Garcia-Garrido, M. F., Posadas, S., López-Téllez, J. F., Blanco, E., Jiménez-Recuerda, I., Granados-Durán, P., Paez-Rueda, J., López, J. C., Khan, Z. U. RGS14414 treatment induces memory enhancement and rescues episodic memory deficits.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas RGS/farmacologia , Animais , Encéfalo/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Memória Episódica , Camundongos , Neuritos/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
3.
Biochim Biophys Acta ; 1842(7): 1041-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24667322

RESUMO

Insulin-like growth factor-II (IGF-II) is a naturally occurring peptide that exerts known pleiotropic effects ranging from metabolic modulation to cellular development, growth and survival. IGF-II triggers its actions by binding to and activating IGF (IGF-I and IGF-II) receptors. In this study, we assessed the neuroprotective effect of IGF-II on corticosterone-induced oxidative damage in adult cortical neuronal cultures and the role of IGF-II receptors in this effect. We provide evidence that treatment with IGF-II alleviates the glucocorticoid-induced toxicity to neuronal cultures, and this neuroprotective effect occurred due to a decrease in reactive oxygen species (ROS) production and a return of the antioxidant status to normal levels. IGF-II acts via not only the regulation of synthesis and/or activity of antioxidant enzymes, especially manganese superoxide dismutase, but also the restoration of mitochondrial cytochrome c oxidase activity and mitochondrial membrane potential. Although the antioxidant effect of IGF-I receptor activation has been widely reported, the involvement of the IGF-II receptor in these processes has not been clearly defined. The present report is the first evidence describing the involvement of IGF-II receptors in redox homeostasis. IGF-II may therefore contribute to the mechanisms of neuroprotection by acting as an antioxidant, reducing the neurodegeneration induced by oxidative insults. These results open the field to new pharmacological approaches to the treatment of diseases involving imbalanced redox homeostasis. In this study, we demonstrated that the antioxidant effect of IGF-II is at least partially mediated by IGF-II receptors.


Assuntos
Antioxidantes/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like II/farmacologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptor IGF Tipo 2/metabolismo , Animais , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucocorticoides/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
4.
J Adv Res ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38341032

RESUMO

INTRODUCTION: One of the hallmarks of Parkinsons Disease (PD) is oxidative distress, leading to mitochondrial dysfunction and neurodegeneration. Insulin-like growth factor II (IGF-II) has been proven to have antioxidant and neuroprotective effects in some neurodegenerative diseases, including PD. Consequently, there isgrowing interest in understanding the different mechanisms involved in the neuroprotective effect of this hormone. OBJECTIVES: To clarify the mechanism of action of IGF-II involved in the protective effect of this hormone. METHODS: The present study was carried out on a cellular model PD based on the incubation of dopaminergic cells (SN4741) in a culture with the toxic 1-methyl-4-phenylpyridinium (MPP+), in the presence of IGF-II. This model undertakes proteomic analyses in order to understand which molecular cell pathways might be involved in the neuroprotective effect of IGF-II. The most important proteins found in the proteomic study were tested by Western blot, colorimetric enzymatic activity assay and immunocytochemistry. Along with the proteomic study, mitochondrial morphology and function were also studied by transmission electron microscopy and oxygen consumption rate. The cell cycle was also analysed using 7AAd/BrdU staining, and flow cytometry. RESULTS: The results obtained indicate that MPP+, MPP++IGF-II treatment and IGF-II, when compared to control, modified the expression of 197, 246 proteins and 207 respectively. Some of these proteins were found to be involved in mitochondrial structure and function, and cell cycle regulation. Including IGF-II in the incubation medium prevents the cell damage induced by MPP+, recovering mitochondrial function and cell cycle dysregulation, and thereby decreasing apoptosis. CONCLUSION: IGF-II improves mitochondrial dynamics by promoting the association of Mitofilin with mitochondria, regaining function and redox homeostasis. It also rebalances the cell cycle, reducing the amount of apoptosis and cell death by the regulation of transcription factors, such as Checkpoint kinase 1.

5.
Front Pharmacol ; 14: 1266095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915412

RESUMO

Background: Incorrect inhalation technique (IT) is an important issue for chronic obstructive pulmonary disease (COPD) patients and healthcare professionals. Studies in which counseling is carried out with healthcare professionals beforehand so that they can properly educate their patients are required. The objective of the present trial is to assess the improvement in the performance of the IT in subjects with COPD and prescribed inhaled therapy after the implementation of an educational intervention conducted by their general practitioners. Methods: A cluster randomized clinical trial was conducted. A total of 286 COPD patients received scheduled inhalation therapy from 27 general practices in seven primary care centers. A teach-back educational intervention was implemented for both healthcare professionals and patients. The primary outcome of this study was the performance of the correct inhalation technique. It is considered a good technique if all steps in the inhalation data sheet are correctly performed. The secondary outcomes were assessed using forced spirometry, the basal dyspnea index, the Medical Research Council dyspnea scale, St George's Respiratory Questionnaire (SGRQ), and EuroQoL5D-5L for health-related quality of life. A one-year follow-up was conducted using an intention-to-treat analysis. Results: After the intervention, incorrect IT was observed in 92% of professionals and patients, with rates reaching 50% and 69.2%, respectively. The effectiveness in patients was significant, with a number needed to treat of 2.14 (95% CI 1.79-2.66). Factors related to correct IT in patients included the type of intervention, length of intervention (>25 min), good pulmonary function, age (youngest <=65, oldest >83), and less limitation of activity due to dyspnea. There was no relation with the cluster. Conclusion: This study shows the effectiveness of direct inhaler technique training provided by a trained professional on an appropriate timescale (for example, a specific consultation for medication reviews), aiming to help subjects improve their performance using the teach-back method. This could be an encouraging intervention to improve medication adherence and health promotion in people with COPD. Clinical Trial Registration: clinicaltrials.gov, identifier ISRCTN93725230.

6.
Cell Death Discov ; 9(1): 438, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042807

RESUMO

Parkinson's disease (PD) is the second most common late-onset neurodegenerative disease and the predominant cause of movement problems. PD is characterized by motor control impairment by extensive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). This selective dopaminergic neuronal loss is in part triggered by intracellular protein inclusions called Lewy bodies, which are composed mainly of misfolded alpha-synuclein (α-syn) protein. We previously reported insulin-like growth factor 2 (IGF2) as a key protein downregulated in PD patients. Here we demonstrated that IGF2 treatment or IGF2 overexpression reduced the α-syn aggregates and their toxicity by IGF2 receptor (IGF2R) activation in cellular PD models. Also, we observed IGF2 and its interaction with IGF2R enhance the α-syn secretion. To determine the possible IGF2 neuroprotective effect in vivo we used a gene therapy approach in an idiopathic PD model based on α-syn preformed fibrils intracerebral injection. IGF2 gene therapy revealed a significantly preventing of motor impairment in idiopathic PD model. Moreover, IGF2 expression prevents dopaminergic neuronal loss in the SN together with a decrease in α-syn accumulation (phospho-α-syn levels) in the striatum and SN brain region. Furthermore, the IGF2 neuroprotective effect was associated with the prevention of synaptic spines loss in dopaminergic neurons in vivo. The possible mechanism of IGF2 in cell survival effect could be associated with the decrease of the intracellular accumulation of α-syn and the improvement of dopaminergic synaptic function. Our results identify to IGF2 as a relevant factor for the prevention of α-syn toxicity in both in vitro and preclinical PD models.

7.
Clin Nutr ; 42(8): 1389-1398, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421852

RESUMO

BACKGROUND: Oleocanthal and oleacein are olive oil phenolic compounds with well known anti-inflammatory and anti-oxidant properties. The main evidence, however, is provided by experimental studies. Few human studies have examined the health benefits of olive oils rich in these biophenols. Our aim was to assess the health properties of rich oleocanthal and oleacein extra virgin olive oil (EVOO), compared to those of common olive oil (OO), in people with prediabetes and obesity. METHODS: Randomised, double-blind, crossover trial done in people aged 40-65 years with obesity (BMI 30-40 kg/m2) and prediabetes (HbA1c 5.7-6.4%). The intervention consisted in substituting for 1 month the oil used for food, both raw and cooked, by EVOO or OO. No changes in diet or physical activity were recommended. The primary outcome was the inflammatory status. Secondary outcomes were the oxidative status, body weight, glucose handling and lipid profile. An ANCOVA model adjusted for age, sex and treatment administration sequence was used for the statistical analysis. RESULTS: A total of 91 patients were enrolled (33 men and 58 women) and finished the trial. A decrease in interferon-γ was observed after EVOO treatment, reaching inter-treatment differences (P = 0.041). Total antioxidant status increased and lipid and organic peroxides decreased after EVOO treatment, the changes reaching significance compared to OO treatment (P < 0.05). Decreases in weight, BMI and blood glucose (p < 0.05) were found after treatment with EVOO and not with OO. CONCLUSIONS: Treatment with EVOO rich in oleocanthal and oleacein differentially improved oxidative and inflammatory status in people with obesity and prediabetes.


Assuntos
Antioxidantes , Estado Pré-Diabético , Masculino , Humanos , Feminino , Azeite de Oliva , Estudos Cross-Over , Obesidade
8.
Cell Mol Life Sci ; 68(10): 1737-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21365279

RESUMO

Visual perception and memory are the most important components of vision processing in the brain. It was thought that the perceptual aspect of a visual stimulus occurs in visual cortical areas and that this serves as the substrate for the formation of visual memory in a distinct part of the brain called the medial temporal lobe. However, current evidence indicates that there is no functional separation of areas. Entire visual cortical pathways and connecting medial temporal lobe are important for both perception and visual memory. Though some aspects of this view are debated, evidence from both sides will be explored here. In this review, we will discuss the anatomical and functional architecture of the entire system and the implications of these structures in visual perception and memory.


Assuntos
Memória/fisiologia , Lobo Temporal/metabolismo , Percepção Visual/fisiologia , Animais , Hipocampo/metabolismo , Hipocampo/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Transdução de Sinais , Lobo Temporal/fisiologia , Córtex Visual/metabolismo , Córtex Visual/fisiologia
9.
Med Clin (Barc) ; 158(10): 472-475, 2022 05 27.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34392985

RESUMO

INTRODUCTION: Numerous studies show that patients with chronic obstructive pulmonary disease (COPD) perform an incorrect inhalation technique (IT). This research aims to describe inhalation errors committed and their clinical importance, and to identify factors related to them. PATIENTS AND METHODS: A total of 995 patients were recruited in this cross-sectional, descriptive study that was conducted across 20 Andalusian Health Care Centres. The following variables were collected: socio-demographic data, quality of life, mental and cognitive status, spirometry tests, severity, number of IT devices, IT correct performance, previous instruction and clinical importance of errors. RESULTS: Of the 995 patients, 906 (91,1%) performed an incorrect IT. The most common errors showed moderate errors, which were related to low-cognitive level, low-peak expiratory flow and fewer medical consultations with the pulmonologist. Critical errors were correlated with greater severity, usage of Turbuhaler® and worse quality of life. DISCUSSION: Soaring incorrect technique rate, whose most common errors sparingly compromise the drug effectiveness. These errors are related to the way the patients perform the IT, and not to the difficulty in handling the device. This information demonstrates the relevance of training patients in a proper way.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Qualidade de Vida , Administração por Inalação , Estudos Transversais , Humanos , Nebulizadores e Vaporizadores , Doença Pulmonar Obstrutiva Crônica/terapia , Espirometria/métodos
10.
Brain Sci ; 11(8)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34439724

RESUMO

Stress seems to contribute to the neuropathology of Parkinson's disease (PD), possibly by dysregulation of the hypothalamic-pituitary-adrenal axis. Oxidative distress and mitochondrial dysfunction are key factors involved in the pathophysiology of PD and neuronal glucocorticoid-induced toxicity. Animal PD models have been generated to study the effects of hormonal stress, but no in vitro model has yet been developed. Our aim was to examine the impact of corticosterone (CORT) administration on a dopaminergic neuronal cell model of PD induced by the neurotoxin MPP+, as a new combined PD model based on the marker of endocrine response to stress, CORT, and oxidative-mitochondrial damage. We determined the impact of CORT, MPP+ and their co-incubation on reactive oxygen species production (O2-•), oxidative stress cellular markers (advanced-oxidation protein products and total antioxidant status), mitochondrial function (mitochondrial membrane potential and mitochondrial oxygen consumption rate) and neurodegeneration (Fluoro-Jade staining). Accordingly, the administration of MPP+ or CORT individually led to cell damage compared to controls (p < 0.05), as determined by several methods, whereas their co-incubation produced strong cell damage (p < 0.05). The combined model described here could be appropriate for investigating neuropathological hallmarks and for evaluating potential new therapeutic tools for PD patients suffering mild to moderate emotional stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA