Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(17): 174001, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31910399

RESUMO

In this work we show how the optical properties of ZnSe nanowires are modified by the presence of Ag nanoparticles on the sidewalls of the ZnSe nanowires. In particular, we show that the low-temperature luminescence of the ZnSe nanowires changes its shape, enhancing the phonon replicas of impurity-related recombination and affecting rise and decay times of the transient absorption bleaching at room temperatures, with an increase of the former and a decrease of the latter. In contrast, the deposition of Au nanoparticles on ZnSe nanowires does not change the optical properties of the sample. We suggest that the mechanism underlying these experimental observations is energy transfer via a resonant interaction, based on the fact that the localized surface plasmon resonance (LSPR) of Ag nanoparticles spectrally overlaps with absorption and emission of ZnSe, while the Au LSPR does not.

2.
Nanotechnology ; 32(2): 025703, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937606

RESUMO

The knowledge of the carrier dynamics in nanostructures is of fundamental importance for the development of (opto)electronic devices. This is true for semiconducting nanostructures as well as for plasmonic nanoparticles (NPs). Indeed, improvement of photocatalytic efficiencies by combining semiconductor and plasmonic nanostructures is one of the reasons why their ultrafast dynamics are intensively studied. In this work, we will review our activity on ultrafast spectroscopy in nanostructures carried out in the recently established EuroFEL Support Laboratory. We have investigated the dynamical plasmonic responses of metal NPs both in solution and in 2D and 3D arrays on surfaces, with particular attention being paid to the effects of the NP shape and to the conversion of absorbed light into heat on a nano-localized scale. We will summarize the results obtained on the carrier dynamics in nanostructured perovskites with emphasis on the hot-carrier dynamics and in semiconductor nanosystems such as ZnSe and Si nanowires, with particular attention to the band-gap bleaching dynamics. Subsequently, the study of semiconductor-metal NP hybrids, such as CeO2-Ag NPs, ZnSe-Ag NPs and ZnSe-Au NPs, allows the discussion of interaction mechanisms such as charge carrier transfer and Förster interaction. Finally, we assess an alternative method for the sensitization of wide band gap semiconductors to visible light by discussing the relationship between the carrier dynamics of TiO2 NPs and V-doped TiO2 NPs and their catalytic properties.

3.
Nanotechnology ; 30(21): 214001, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30716721

RESUMO

We present femtosecond transient transmission (or absorbance) measurements in silicon nanowires in the energy range 1.1-3.5 eV, from below the indirect band-gap to above the direct band-gap. Our pump-probe measurements allow us to give a complete picture of the carrier dynamics in silicon. In this way we perform an experimental study with a spectral completeness that is lacking in the whole literature on carrier dynamics in silicon. A particular emphasis is given to the dynamics of the transient absorbance at the energies relative to the direct band gap at 3.3 eV. Indeed, the use of pump energies below and above 3.3 eV allowed us to disentangle the dynamics of electrons and holes in their respective bands. The band gap renormalization of the direct band gap is also investigated for different pump energies. A critical discussion is given on the results below 3.3 eV where phonon-assisted processes are required in the optical transitions.

4.
Nano Lett ; 17(11): 6540-6547, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035544

RESUMO

At ambient conditions, GaAs forms in the zincblende (ZB) phase with the notable exception of nanowires (NWs) where the wurtzite (WZ) lattice is also found. The WZ formation is both a complication to be dealt with and a potential feature to be exploited, for example, in NW homostructures wherein ZB and WZ phases alternate controllably and thus band gap engineering is achieved. Despite intense studies, some of the fundamental electronic properties of WZ GaAs NWs are not fully assessed yet. In this work, by using photoluminescence (PL) under high magnetic fields (B = 0-28 T), we measure the diamagnetic shift, ΔEd, and the Zeeman splitting of the band gap free exciton in WZ GaAs formed in core-shell InGaAs-GaAs NWs. The quantitative analysis of ΔEd at different temperatures (T = 4.2 and 77 K) and for different directions of B⃗ allows the determination of the exciton reduced mass, µexc, in planes perpendicular (µexc = 0.052 m0, where m0 is the electron mass in vacuum) and parallel (µexc = 0.057 m0) to the c axis of the WZ lattice. The value and anisotropy of the exciton reduced mass are compatible with the electron lowest-energy state having Γ7C instead of Γ8C symmetry. This finding answers a long discussed issue about the correct ordering of the conduction band states in WZ GaAs. As for the Zeeman splitting, it varies considerably with the field direction, resulting in an exciton gyromagnetic factor equal to 5.4 and ∼0 for B⃗//c and B⃗⊥c, respectively. This latter result provides fundamental insight into the band structure of wurtzite GaAs.

6.
Nanotechnology ; 27(22): 225601, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27098523

RESUMO

A key characteristic of semiconductor nanowires (NWs) is that they grow on any substrate that can withstand the growth conditions, paving the way for their use in flexible electronics. We report on the direct growth of crystalline silicon nanowires on polyimide substrates. The Si NWs are grown by plasma-enhanced chemical vapor deposition, which allows the growth to proceed at temperatures low enough to be compatible with plastic substrates (350 °C), where gold or indium are used as growth seeds. In is particularly interesting as the seed not only because it leads to a better NW crystal quality but also because it overcomes a core problem induced by the use of Au in silicon processing, i.e. Au creates deep carrier traps when incorporated in the nanowires.

7.
Nano Lett ; 14(3): 1275-80, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24484453

RESUMO

We demonstrate triggered single-photon emission from a novel system of site-controlled quantum dots (QDs), fabricated by exploiting the hydrogen-assisted, spatially selective passivation of N atoms in dilute nitride semiconductors. Evidence of this nonclassical behavior is provided by the observation of strong antibunching in the autocorrelation histogram of the QD exciton emission line. This class of site-controlled quantum emitters can be exploited for the fabrication of new hybrid QD-nanocavity systems of interest for future quantum technologies.

8.
Nanotechnology ; 23(30): 305602, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22781505

RESUMO

In the present work we report a simple method to fabricate Si nanotubes (NTs) starting from the growth of self-assembled sacrificial Si nanowires that, at the same time, embeds them into a polyimide matrix, allowing a very easy manipulation of these nano-objects, including removal, transfer and positioning. Our all-silicon fabrication method is completely compatible with the Si technology platform and is therefore implementable using the existing technology. Transferred NTs show good electrical contact with underlying electrodes, and relatively low resistance values have been measured. All these features demonstrate the effectiveness of the transfer method and the potentiality of the NTs in electronics. Finally, optical reflectivity of the NTs has been measured in the near UV-near IR spectral range.

9.
J Phys Chem Lett ; 12(48): 11659-11665, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34823362

RESUMO

The study of MAPbI3 phase transitions based on temperature-dependent optical spectroscopy has recently gained a huge attention. Photoluminescence (PL) investigations of the tetragonal-orthorhombic transition suggest that tetragonal nanodomains are present below the transition temperature and signatures associated with tetragonal segregations are observed. We have studied the impact of phase nanosegregation across the orthorhombic-tetragonal phase transition of MAPbI3 on the system's properties employing a tight binding (TB) approach. The particle swarm optimization has been used to obtain a consistent set of TB parameters, where the target properties of the system have been derived by first-principles calculations. The theoretical results have been compared with the measured PL spectra for a temperature range going from 10 to 100 K. Our model effectively captures the carriers' localization phenomenon induced by the presence of residual tetragonal nanodomains and demonstrates that the assumption of phase nanosegregation can explain the low-energy features in the PL spectra of MAPbI3.

10.
Nanoscale Adv ; 3(1): 214-222, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36131871

RESUMO

The controlled modification of the electronic properties of ZnO nanorods via transition metal doping is reported. A series of ZnO nanorods were synthesized by chemical bath growth with varying Co content from 0 to 20 atomic% in the growth solution. Optoelectronic behavior was probed using cathodoluminescence, time-resolved luminescence, transient absorbance spectroscopy, and the incident photon-to-current conversion efficiency (IPCE). Analysis indicates the crucial role of surface defects in determining the electronic behavior. Significantly, Co-doping extends the light absorption of the nanorods into the visible region, increases the surface defects, and shortens the non-radiative lifetimes, while leaving the radiative lifetime constant. Furthermore, for 1 atomic% Co-doping the IPCE of the ZnO nanorods is enhanced. These results demonstrate that doping can controllably tune the functional electronic properties of ZnO nanorods for applications.

11.
Nanotechnology ; 21(35): 355701, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20683145

RESUMO

In this work we present a study of the reflectivity from highly disordered silicon nanowire films as a function of the wire size. Arrays of Au-catalyzed Si wires with length and diameter ranging from 0.15-0.2 microm and 30-50 nm up to 20-25 microm and 200-250 nm, respectively, were grown on top of either SiO(2)(1 microm)/Si(100) or Si(100) substrates. The integrated total reflection was measured in the 190-2500 nm spectral range. The results show that, increasing the wire size, the optical behavior of the Si wire film can be gradually tuned from that of an optical coating characterized by a graded effective refractive index to that of an ensemble of diffuse optical reflectors. In addition, we show how the optical analysis provides some important indications concerning the structural properties of the nanowires.

12.
Nanotechnology ; 21(25): 255601, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20508312

RESUMO

High densities of self-catalyzed Si nanowires have been grown at temperatures down to 320 degrees C on different Si substrates, whose surfaces have been roughened by simple physical or chemical treatments. The particular substrates are Si(110) cleavage planes, chemically etched Si(111) surfaces and microcrystalline Si obtained by laser annealing thin amorphous Si layers. The NW morphology depends on the growth surface. Transmission electron microscopy indicates that the NWs are made of pure Si with a crystalline core structure. Reflectivity measurements confirm this latter finding.

13.
ACS Appl Nano Mater ; 3(8): 7781-7788, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32954224

RESUMO

Developing highly efficient and stable photoelectrochemical (PEC) water-splitting electrodes via inexpensive, liquid phase processing is one of the key challenges for the conversion of solar energy into hydrogen for sustainable energy production. ZnO represents one the most suitable semiconductor metal oxide alternatives because of its high electron mobility, abundance, and low cost, although its performance is limited by its lack of absorption in the visible spectrum and reduced charge separation and charge transfer efficiency. Here, we present a solution-processed water-splitting photoanode based on Co-doped ZnO nanorods (NRs) coated with a transparent functionalizing metal-organic framework (MOF). The light absorption of the ZnO NRs is engineered toward the visible region by Co-doping, while the MOF significantly improves the stability and charge separation and transfer properties of the NRs. This synergetic combination of doping and nanoscale surface functionalization boosts the current density and functional lifetime of the photoanodes while achieving an unprecedented incident photon to current efficiency (IPCE) of 75% at 350 nm, which is over 2 times that of pristine ZnO. A theoretical model and band structure for the core-shell nanostructure is provided, highlighting how this nanomaterial combination provides an attractive pathway for the design of robust and highly efficient semiconductor-based photoanodes that can be translated to other semiconducting oxide systems.

14.
J Phys Chem Lett ; 11(14): 5686-5691, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32580554

RESUMO

The ultrafast dynamics of excited states in cerium oxide are investigated to access the early moments of polaron formation, which can influence the photocatalytic functionality of the material. UV transient absorbance spectra of photoexcited CeO2 exhibit a bleaching of the band edge absorbance induced by the pump and a photoinduced absorbance feature assigned to Ce 4f → Ce 5d transitions. A blue shift of the spectral response of the photoinduced absorbance signal in the first picosecond after the pump excitation is attributed to the dynamical formation of small polarons with a characteristic time of 330 fs. A further important result of our work is that the combined use of steady-state and ultrafast transient absorption allows us to propose a revised value for the optical gap for ceria (Eog = 4 eV), significantly larger than usually reported.

15.
Nanoscale ; 6(14): 8392-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24942288

RESUMO

The growth mechanism of semiconductor nanowires is still an argument of high interest, and it is becoming clearer, investigation after investigation, that simple pictures fail to describe the complex behaviors observed under different growth conditions. We report here on the growth of semiconductor nanowires, maintaining control over the chemical composition and the physical state of the metallic seeds, and tuning the growth mechanism by varying the growth conditions. We focused on Au-assisted ZnSe nanowires grown by molecular beam epitaxy on GaAs(111)B substrates. We show that at sufficiently high temperatures, the Au seed is strongly affected by the interaction with the substrate and that nanowire growth can occur through two different mechanisms, which have a strong impact on the nanowire's morphology and crystal quality. In particular, ZnSe NWs may exhibit either a uniformly oriented, straight morphology when the nanoparticle seed is liquid, or a kinked, worm-like shape when the nanoparticle seed is switched to a solid phase. This switch, which tunes the nanowire growth mechanism, is achieved by controlling the Zn-to-Se beam pressure ratio at the Au-seed surface. Our results allow a deeper understanding of particle-assisted nanowire growth, and an accurate control of nanowire morphology via the control of the growth mechanism.

16.
ACS Nano ; 7(12): 10717-25, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24261718

RESUMO

Semiconductor nanowires (NWs) have the prospect of being employed as basic units for nanoscale devices and circuits. However, the impact of their one-dimensional geometry and peculiar crystal phase on transport and spin characteristics remains largely unknown. We determine the exciton reduced mass and gyromagnetic factor of (InGa)As NWs in the wurtzite phase by photoluminescence (PL) spectroscopy under very high magnetic fields. For B perpendicular to the NW c axis, the exciton reduced mass is 10% greater than that expected for the zincblende phase and no field-induced circular polarization of PL is observed. For B parallel to c, an exciton reduced mass 35% greater than that of the zincblende phase is derived. Moreover, a circular dichroism of 70% is found at 28 T. Finally, an analysis of the PL line shape points at two Zeeman split levels, whose separation corresponds to an exciton gyromagnetic factor |g(e) - g(h,∥)| = 5.8. These results provide a quantitative estimate of the basic electronic and spin properties of NWs and may guide a theoretical analysis of the band structure of these fascinating nanostructures.

17.
Nanotechnology ; 19(27): 275711, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-21828723

RESUMO

Self-assembled GaAs nanowires have been grown on Si by molecular beam epitaxy without the use of any outside metal catalyst. The growth occurs on Si facets obtained by the cleavage of Si(100) substrates. The growth has been obtained with or without Ga pre-deposition. In both cases two kinds of nanowires have been obtained. The wires of the first type clearly present a Ga droplet at their free end and have a lattice structure that is wurtzite for wide regions beneath the Ga droplet. The second type, in contrast, ends with pyramidally shaped GaAs and has a crystal lattice that is mainly zincblende with only a few and small wurtzite regions, if any. The Ga-ended nanowires are longer than the others and thinner on average. The experimental findings suggest that the two types of nanowires grow after different growth processes.

19.
Nano Lett ; 6(9): 2130-4, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16968038

RESUMO

GaAs nanowires have been grown on SiO2 and GaAs by molecular beam epitaxy using manganese as growth catalyst. Transmission electron microscopy shows that the wires have a wurtzite-type lattice and that alpha-Mn particles are found at the free end of the wires. X-ray absorption fine structure measurements reveal the presence of a significant fraction of Mn-As bonds, suggesting Mn diffusion and incorporation during wire growth. Transport measurements indicate that the wires are p-type, as expected from doping of GaAs with Mn.


Assuntos
Arsenicais/química , Cristalização/métodos , Gálio/química , Manganês/química , Nanotubos/química , Nanotubos/ultraestrutura , Condutividade Elétrica , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA