Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 28(2): 180-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25476994

RESUMO

One of the key challenges in the study of health-related aerosols is predicting and monitoring sites of particle deposition in the respiratory tract. The potential health risks of ambient exposure to environmental or workplace aerosols and the beneficial effects of medical aerosols are strongly influenced by the site of aerosol deposition along the respiratory tract. Nuclear medicine is the only current modality that combines quantification and regional localization of aerosol deposition, and this technique remains limited by its spatial and temporal resolutions and by patient exposure to radiation. Recent work in MRI has shed light on techniques to quantify micro-sized magnetic particles in living bodies by the measurement of associated static magnetic field variations. With regard to lung MRI, hyperpolarized helium-3 may be used as a tracer gas to compensate for the lack of MR signal in the airways, so as to allow assessment of pulmonary function and morphology. The extrathoracic region of the human respiratory system plays a critical role in determining aerosol deposition patterns, as it acts as a filter upstream from the lungs. In the present work, aerosol deposition in a mouth-throat phantom was measured using helium-3 MRI and compared with single-photon emission computed tomography. By providing high sensitivity with high spatial and temporal resolutions, phase-contrast helium-3 MRI offers new insights for the study of particle transport and deposition.


Assuntos
Aerossóis/administração & dosagem , Meios de Contraste , Hélio , Imageamento por Ressonância Magnética/métodos , Sistema Respiratório/anatomia & histologia , Humanos , Imageamento Tridimensional , Ferro/metabolismo , Campos Magnéticos , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
2.
Magn Reson Med ; 72(4): 1072-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24407833

RESUMO

PURPOSE: In MR-velocity phase-contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal-to-noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision. THEORY AND METHODS: This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2 *. Experimental validation using hyperpolarized (3) He diluted in various buffer gases ((4) He, N2 , and SF6 ) is presented at 1.5 Tesla (T) in a straight pipe. RESULTS: Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas. CONCLUSION: The theoretical predictions were validated, providing a way to optimize velocity mapping in gases.


Assuntos
Algoritmos , Hélio/análise , Hélio/química , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reologia/métodos , Meios de Contraste/análise , Meios de Contraste/química , Difusão , Isótopos/análise , Isótopos/química , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA