Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Stroke ; 55(4): 1062-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436063

RESUMO

BACKGROUND: In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS: GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS: PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS: In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.


Assuntos
Doenças Fetais , Hidrocefalia , Células-Tronco Neurais , Nascimento Prematuro , Humanos , Feminino , Animais , Camundongos , Epêndima/patologia , Hidrocefalia/cirurgia , Hidrocefalia/metabolismo , Hemorragia Cerebral/terapia , Hemorragia Cerebral/metabolismo , Edema
2.
Small ; 19(34): e2301653, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158287

RESUMO

Microgels are soft microparticles that often exhibit thermoresponsiveness and feature a transformation at a critical temperature, referred to as the volume phase transition temperature. Whether this transformation occurs as a smooth or as a discontinuous one is still a matter of debate. This question can be addressed by studying individual microgels trapped in optical tweezers. For this aim, composite particles are obtained by decorating  Poly-N-isopropylacrylamide (pNIPAM) microgels with iron oxide nanocubes. These composites become self-heating when illuminated by the infrared trapping laser, performing hot Brownian motion within the trap. Above a certain laser power, a single decorated microgel features a volume phase transition that is discontinuous, while the usual continuous sigmoidal-like dependence is recovered after averaging over different microgels. The collective sigmoidal behavior enables the application of a power-to-temperature calibration and provides the effective drag coefficient of the self-heating microgels, thus establishing these composite particles as potential micro-thermometers and micro-heaters. Moreover, the self-heating microgels also exhibit an unexpected and intriguing bistability behavior above the critical temperature, probably due to partial collapses of the microgel. These results set the stage for further studies and the development of applications based on the hot Brownian motion of soft particles.

3.
Inorg Chem ; 60(1): 152-160, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201695

RESUMO

We describe a wet chemical method for the synthesis of uniform and well-dispersed dysprosium vanadate (DyVO4) and holmium vanadate (HoVO4) nanoparticles with an almost spherical shape and a mean size of ∼60 nm and their functionalization with poly(acrylic acid). The transverse magnetic relaxivity of both systems at 9.4 T is analyzed on the basis of magnetic susceptibility and magnetization measurements in order to evaluate their potential for application as high-field MRI contrast agents. In addition, the X-ray attenuation properties of these systems are also studied to determine their capabilities as computed tomography contrast agent. Finally, the colloidal stability under physiological pH conditions and the cytotoxicity of the functionalized NPs are also addressed to assess their suitability for bioimaging applications.


Assuntos
Meios de Contraste/química , Disprósio/química , Hólmio/química , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Vanadatos/química , Resinas Acrílicas/química , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/farmacologia , Disprósio/farmacologia , Hólmio/farmacologia , Humanos , Campos Magnéticos , Nanopartículas/química , Células PC-3 , Tamanho da Partícula , Vanadatos/farmacologia
4.
Nature ; 528(7583): 560-564, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26649819

RESUMO

Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.


Assuntos
Células Epiteliais/citologia , Interleucinas/imunologia , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunidade nas Mucosas , Interleucinas/deficiência , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Intestino Delgado/imunologia , Intestino Delgado/patologia , Camundongos , Organoides/citologia , Organoides/crescimento & desenvolvimento , Organoides/imunologia , Celulas de Paneth/citologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Interleucina 22
5.
J Inherit Metab Dis ; 42(3): 407-413, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30671984

RESUMO

PURPOSE: We report a patient with a human cationic amino acid transporter 2 (CAT-2) defect discovered due to a suspected arginase 1 deficiency observed in newborn screening (NBS). METHODS: A NBS sample was analyzed using tandem mass spectrometry. Screen results were confirmed by plasma and urine amino acid quantification. Molecular diagnosis was done using clinical exome sequencing. Dimethylated arginines were determined by HPLC and nitrate/nitrite levels by a colorimetric assay. The metabolomic profile was analyzed using 1D nuclear magnetic resonance spectroscopy. RESULTS: A Spanish boy of nonconsanguineous parents had high arginine levels in a NBS blood sample. Plasma and urinary cationic amino acids were high. Arginase enzyme activity in erythrocytes was normal and no pathogenic mutations were identified in the ARG1 gene. Massive parallel sequencing detected two loss-of-function mutations in the SLC7A2 gene. Currently, the child receives a protein-controlled diet of 1.2 g/kg/day with protein-and amino-acid free infant formula, 30 g/day, and is asymptomatic. CONCLUSION: We identified a novel defect in human CAT-2 due to biallelic pathogenic variants in the SLC7A2 gene. The characteristic biochemical profile includes high plasma and urine arginine, ornithine, and lysine levels. NBS centers should know of this disorder since it can be detected in arginase 1 deficiency screening.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Transportador 2 de Aminoácidos Catiônicos/deficiência , Doenças Metabólicas/genética , Arginase/genética , Dieta com Restrição de Proteínas , Humanos , Hiperargininemia/genética , Recém-Nascido , Masculino , Doenças Metabólicas/dietoterapia , Mutação , Triagem Neonatal
6.
Bioconjug Chem ; 29(5): 1785-1791, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29718659

RESUMO

The efficiency of maghemite nanoparticles for the treatment of anemia was sensibly higher when nanoparticles were incorporated onto the probiotic bacterium Lactobacillus fermentum (MNP-bacteria) than when administrated as uncoated nanoparticles (MNP). Plasma iron and hemoglobin, intestine expression of divalent metal transporter 1 (DMT1) and duodenal Cytochrome b (DcytB), as well as hepatic expression of the hormone hepcidin were fully restored to healthy levels after administration of MNP-bacteria but not of MNP. A magnetic study on biodistribution and biodegradation showed accumulation of maghemite nanoparticles in intestine lumen when MNP-bacteria were administrated. In contrast, MNP barely reached intestine. In vivo MRI studies suggested the internalization of MNP-bacteria into enterocytes, which did not occur with MNP. Transmission electronic microscopy confirmed this internalization. The collective analysis of results point out that L. fermentum is an excellent carrier to overcome the stomach medium and drive maghemite nanoparticles to intestine, where iron absorption occurs. Due the probiotic ability to adhere to the gut wall, MNP-bacteria internalize into the enterocyte, where maghemite nanoparticles are delivered, providing an adequate iron level into enterocyte. This paper advances a new route for effective iron absorption in the treatment of anemia.


Assuntos
Anemia/terapia , Compostos Férricos/uso terapêutico , Lactobacillus , Nanopartículas/uso terapêutico , Probióticos/uso terapêutico , Anemia/sangue , Anemia/metabolismo , Animais , Enterócitos/metabolismo , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Células HT29 , Hemoglobinas/análise , Hepcidinas/análise , Humanos , Ferro/sangue , Lactobacillus/metabolismo , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/análise , Probióticos/administração & dosagem , Probióticos/farmacocinética , Ratos Wistar , Distribuição Tecidual
7.
J Neurochem ; 142(1): 132-139, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28429368

RESUMO

ARALAR/AGC1 (aspartate-glutamate mitochondrial carrier 1) is an important component of the NADH malate-aspartate shuttle (MAS). AGC1-deficiency is a rare disease causing global cerebral hypomyelination, developmental arrest, hypotonia, and epilepsy (OMIM ID #612949); the aralar-KO mouse recapitulates the major findings in humans. This study was aimed at understanding the impact of ARALAR-deficiency in brain lactate levels as a biomarker. We report that lactate was equally abundant in wild-type and aralar-KO mouse brain in vivo at postnatal day 17. We find that lactate production upon mitochondrial blockade depends on up-regulation of lactate formation in astrocytes rather than in neurons. However, ARALAR-deficiency decreased cell respiration in neurons, not astrocytes, which maintained unchanged respiration and lactate production. As the primary site of ARALAR-deficiency is neuronal, this explains the lack of accumulation of brain lactate in ARALAR-deficiency in humans and mice. On the other hand, we find that the cytosolic and mitochondrial components of the glycerol phosphate shuttle are present in astrocytes with similar activities. This suggests that glycerol phosphate shuttle is the main NADH shuttle in astrocytes and explains the absence of effects of ARALAR-deficiency in these cells.


Assuntos
Agrecanas/genética , Agrecanas/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Ácido Láctico/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Transtornos Psicomotores/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Antiporters/genética , Astrócitos/metabolismo , Química Encefálica/genética , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio/genética
8.
Bioconjug Chem ; 28(11): 2707-2714, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28945361

RESUMO

We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λexc = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors.


Assuntos
Substâncias Luminescentes/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Imagem Óptica/métodos , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Multimodal , Pontos Quânticos/química , Pele/diagnóstico por imagem
9.
Respiration ; 92(1): 40-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362271

RESUMO

BACKGROUND: Probe-based confocal laser endomicroscopy (pCLE) is a novel technique that provides in vivo microscopic imaging of the distal lung. We hypothesized that the intra-alveolar exudates characterizing Pneumocystis jirovecii pneumonia (PJP) can be identified by pCLE in vivo and help in its diagnosis. OBJECTIVES: We aimed to assess the usefulness of pCLE for the in vivo diagnosis of PJP. METHODS: Thirty-two human immunodeficiency virus (HIV)-positive patients with new pulmonary infiltrates and fever were studied using pCLE. Real-time alveolar images were recorded during the bronchoscopy for off-line analysis by two independent observers. Bronchoalveolar lavage samples were also obtained and processed for microbiology and cytological evaluation, including Grocott stain for P. jirovecii. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of pCLE for the diagnosis of PJP in these patients were calculated. RESULTS: Fourteen patients (44%) were confirmed to have PJP by cultures/staining. pCLE was well tolerated in all patients. It identified intra-alveolar exudates in 13 of them (41%), where 11 of them (85%) had positive Grocott stain for P. jirovecci, with 93% concordance between observers. Sensitivity, specificity, PPV and NPV of pCLE for the diagnosis of PJP were 79, 89, 85 and 84%, respectively. In smokers, these figures improved to be 92, 88, 85 and 94%. CONCLUSIONS: pCLE is a quick and safe procedure for on-site diagnosis of PJP in HIV+ patients with excellent specificity and sensitivity mainly in smokers.


Assuntos
Broncoscopia/métodos , Microscopia Confocal/métodos , Pneumonia por Pneumocystis/diagnóstico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumocystis carinii , Valor Preditivo dos Testes
10.
J Exp Bot ; 66(11): 3113-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873654

RESUMO

Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles' age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers' adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development.


Assuntos
Aclimatação , Regulação da Expressão Gênica de Plantas , Metaboloma , Pinus/fisiologia , Transcriptoma , Meio Ambiente , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese/fisiologia , Pinus/genética , Pinus/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Chuva , Estações do Ano , Temperatura , Árvores
11.
MAGMA ; 28(2): 119-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24916487

RESUMO

OBJECTIVE: We sought to evaluate the effects of acute hyperglycemia induced by intraperitoneal injection of glucose (2.7 g/kg) on vascular delivery to GL261 mouse gliomas kept at moderate hypothermia (~30 °C). MATERIALS AND METHODS: Seven GL261 glioma-bearing mice were studied by T1-weighted DCE MRI before and after an injection of glucose (n = 4) or saline (n = 3). Maximum relative contrast enhancement (RCE) and initial area under the enhancement curve (IAUC) were determined in each pixel. RESULTS: The mean tumor parameter values showed no significant changes after injecting either saline (RCE -5.9 ± 5.0 %; IAUC -3.7 ± 3.6 %) or glucose (RCE -1.6 ± 9.0 %; IAUC +0.6 ± 6.4 %). Pixel-by-pixel analysis revealed small post-injection changes in RCE and IAUC between the glucose and saline groups, all within 13 % range of their baseline values. CONCLUSION: Perturbing the metabolism of GL261 tumors kept at moderate hypothermia with hyperglycemia did not induce significant changes in the permeability/perfusion of these tumors. This is relevant for future studies with this model since regional differences in glucose accumulation could thus reflect basal heterogeneities in vasculature and/or metabolism of GL261 tumors.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Imagem de Difusão por Ressonância Magnética/métodos , Hiperglicemia/patologia , Hipotermia Induzida/métodos , Doença Aguda , Animais , Neoplasias Encefálicas/complicações , Linhagem Celular Tumoral , Feminino , Glioma , Hiperglicemia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Carga Tumoral
12.
Langmuir ; 30(18): 5238-47, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24694292

RESUMO

Superparamagnetic iron oxide nanoparticles coated with titanium dioxide have been synthesized, growing the titanium dioxide directly either on the magnetic nuclei or on magnetic nanoparticles previously coated with a semihydrophobic silica layer. Both coatings have been obtained by sol-gel. Since it is well-known that the existence of the intermediate silica layer influences the physicochemical properties of the material, a detailed characterization of both types of coatings has been carried out. The morphology, structure, and composition of the synthesized nanomatrices have been locally analyzed with subangstrom spatial resolution, by means of aberration corrected transmission electron microscopy (HRTEM and STEM-HAADF). Besides magnetization measurements, proton relaxivity experiments have been also performed on water suspensions of the as-synthesized nanoparticles to investigate the role of the silica interlayer in the relaxometric properties. The silica interlayer leads to nanoparticles with much higher water stability and to higher relaxivity of the suspensions.


Assuntos
Nanopartículas de Magnetita/química , Dióxido de Silício/química , Titânio/química
13.
Genes Chromosomes Cancer ; 52(8): 753-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23686965

RESUMO

The infrequency of translocations in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemias (CMML) makes their identification and reporting interesting for the recognition of the recurrent ones and the genes involved in these neoplasias. The aims of this study were to identify new translocations associated with MDS and CMML and to establish their frequency in a cohort of 8,016 patients from the Spanish Group of MDS database. The karyotype was evaluable in 5,654 (70%) patients. Among those, 2,014 (36%) had chromosomal abnormalities, including 213 (10%) translocations identified in 195 patients. The translocations were balanced in 183 (86%) cases and unbalanced in 30 (14%) cases. All chromosomes were found to be involved in translocations, with the single exception of the Y chromosome. The chromosomes most frequently involved were in decreasing frequency: 3, 1, 7, 2, 11, 5, 12, 6, and 17. Translocations were found in karyotypes as the unique chromosomal abnormality (33%), associated with another chromosomal abnormality (11%), as a part of a complex karyotype (17%), and as a part of a monosomal karyotype (38%). There were 155 translocations not previously described in MDS or CMML and nine of them appeared to be recurrent.


Assuntos
Cromossomos Humanos/genética , Leucemia Mielomonocítica Crônica/genética , Síndromes Mielodisplásicas/genética , Translocação Genética/genética , Cromossomos Humanos/classificação , Humanos , Cariótipo , Leucemia Mielomonocítica Crônica/patologia , Síndromes Mielodisplásicas/patologia
14.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412549

RESUMO

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Desoxicitidina , Modelos Animais de Doenças , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Humanos , Gencitabina , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Interferência de RNA
15.
Neuroimage ; 64: 448-57, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23000787

RESUMO

Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5 Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10

Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Apetite/fisiologia , Mapeamento Encefálico/métodos , Jejum/fisiologia , Hipotálamo/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Animais , Imagem de Difusão por Ressonância Magnética , Humanos , Aumento da Imagem/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie , Adulto Jovem
16.
J Colloid Interface Sci ; 629(Pt A): 310-321, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36081210

RESUMO

Uniform sodium-dysprosium double molybdate (NaDy(MoO4)2) nanoparticles having different morphologies (spheres and ellipsoids) and tunable size have been synthesized for the first time in literature. The procedure is based on a homogeneous precipitation process at moderated temperatures (≤220 °C) from solutions containing appropriated precursors dissolved in ethylene glycol-water mixtures, in the absence (spheres) or the presence (ellipsoids) of tartrate anions. The effects of the morphological characteristics (size and shape) of the nanoparticles on the magnetic relaxivity at high field (9.4 T) have been evaluated finding that the latter magnitude was higher for the spheres than for the ellipsoids, indicating their better suitability as contrast agents for high-field magnetic resonance imaging. Such nanoparticles have been successfully coated with polymers bearing carboxylate functional groups through a layer-by-layer process, which improves the colloidal stability of the nanoparticles in physiological media. It has been also found that the coating layer had no significant effects on the nanoparticles relaxivity and that such coated nanoparticles exhibited a high biocompatibility and a high chemical stability. In summary, we have developed NaDy(MoO4)2 based bioprobes which meet the required criteria for their use as contrast agents for high-field magnetic resonance imaging.


Assuntos
Meios de Contraste , Nanopartículas , Tartaratos , Disprósio , Imageamento por Ressonância Magnética/métodos , Polímeros , Campos Magnéticos , Ânions , Água , Etilenoglicóis , Sódio
17.
J Colloid Interface Sci ; 646: 721-731, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37229990

RESUMO

We have developed a trimodal bioimaging probe for near-infrared luminescent imaging, high-field magnetic resonance imaging, and X-ray computed tomography using Dy3+ as the paramagnetic component and Nd3+ as the luminescent cation, both of them incorporated in a vanadate matrix. Among different essayed architectures (single phase and core-shell nanoparticles) the one showing the best luminescent properties is that consisting of uniform DyVO4 nanoparticles coated with a first uniform layer of LaVO4 and a second layer of Nd3+-doped LaVO4. The magnetic relaxivity (r2) at high field (9.4 T) of these nanoparticles was among the highest values ever reported for this kind of probes and their X-ray attenuation properties, due to the presence of lanthanide cations, were also better than those of a commercial contrast agent (iohexol) commonly used for X-ray computed tomography. In addition, they were chemically stable in a physiological medium in which they could be easily dispersed owing to their one-pot functionalization with polyacrylic acid, and, finally, they were non-toxic for human fibroblast cells. Such a probe is, therefore, an excellent multimodal contrast agent for near-infrared luminescent imaging, high-field magnetic resonance imaging, and X-ray computed tomography.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Humanos , Elementos da Série dos Lantanídeos/química , Vanadatos , Meios de Contraste/química , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química
18.
iScience ; 26(9): 107620, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37694157

RESUMO

Fetal growth restriction (FGR) affects 5-10% of pregnancies, is the largest contributor to fetal death, and can have long-term consequences for the child. Implementation of a standard clinical classification system is hampered by the multiphenotypic spectrum of small fetuses with substantial differences in perinatal risks. Machine learning and multiomics data can potentially revolutionize clinical decision-making in FGR by identifying new phenotypes. Herein, we describe a cluster analysis of FGR based on an unbiased machine-learning method. Our results confirm the existence of two subtypes of human FGR with distinct molecular and clinical features based on multiomic analysis. In addition, we demonstrated that clusters generated by machine learning significantly outperform single data subtype analysis and biologically support the current clinical classification in predicting adverse maternal and neonatal outcomes. Our approach can aid in the refinement of clinical classification systems for FGR supported by molecular and clinical signatures.

19.
Nanoscale ; 14(31): 11461-11470, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904370

RESUMO

The use of high-field magnets for magnetic resonance imaging (MRI) is expected to experience the fastest growth rate during the present decade. Although several CAs for MRI scanners using high magnetic fields have been reported, they are mostly based on fluoride matrices, which are known for their low chemical stability in aqueous suspensions. Chemically stable MRI CAs for high-field magnets are therefore needed to enable the advances in MRI technique. Herein, we synthesized uniform DyPO4 nanoparticles (NPs) with tuneable sizes between 23 and 57 nm using homogeneous precipitation in butanol. The NPs were successfully functionalized with polyacrylic acid (PAA) and showed good colloidal stability in aqueous suspensions. Chemical stability was also assessed in PBS, showing negligible solubility. The effect of particle size on the transversal relaxivity value (r2) was further explored at 9.4 T, finding a clear increase in r2 with particle size. The r2 value found for the largest NPs was 516 mM-1 s-1, which is, to the best of our knowledge, the highest r2 value ever reported at 9.4 T for any Dy-based nanometric particles in the literature. Finally, the latter NPs were submitted to biosafety studies after polyethylene glycol (PEG) functionalization. Cell morphology, induction of necrotic/late apoptotic cells, and mitochondrial activity were thoroughly analyzed. The results clearly indicated negligible toxicity effects under the assayed conditions. Short- and long-term in vivo pharmacokinetics of the intravenously injected NPs were assessed by dynamic T2-weighted MRI and quantitative T2 mapping, revealing faster liver than spleen uptake, while no accumulation was observed in the kidneys. Finally, no histopathological changes were observed in any of the studied organs, including the liver, kidney, spleen, and lung, which provide further evidence of the biocompatibility of DyPO4 NPs and, therefore, their suitability as bioimaging probes.


Assuntos
Disprósio , Nanopartículas , Meios de Contraste/farmacologia , Disprósio/farmacologia , Imageamento por Ressonância Magnética/métodos , Fosfatos , Suspensões
20.
Pharmaceutics ; 14(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336012

RESUMO

The development of nanoplatforms prepared to perform both multimodal imaging and combined therapies in a single entity is a fast-growing field. These systems are able to improve diagnostic accuracy and therapy success. Multicomponent Nanoparticles (MCNPs), composed of iron oxide and gold, offer new opportunities for Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) diagnosis, as well as combined therapies based on Magnetic Hyperthermia (MH) and Photothermal Therapy (PT). In this work, we describe a new seed-assisted method for the synthesis of Au@Fe Nanoparticles (NPs) with a flower-like structure. For biomedical purposes, Au@Fe NPs were functionalized with a PEGylated ligand, leading to high colloidal stability. Moreover, the as-obtained Au@Fe-PEG NPs exhibited excellent features as both MRI and CT Contrast Agents (CAs), with high r2 relaxivity (60.5 mM-1⋅s-1) and X-ray attenuation properties (8.8 HU mM-1⋅HU). In addition, these nanoflowers presented considerable energy-to-heat conversion under both Alternating Magnetic Fields (AMFs) (∆T ≈ 2.5 °C) and Near-Infrared (NIR) light (∆T ≈ 17 °C). Finally, Au@Fe-PEG NPs exhibited very low cytotoxicity, confirming their potential for theranostics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA