Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Anal Bioanal Chem ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581532

RESUMO

This paper describes the use of PolyJet 3D printing to fabricate microchip electrophoresis devices with integrated microwire electrodes for amperometric detection. The fabrication process involves 3D printing of two separate pieces, a channel layer and an electrode layer. The channel layer is created by 3D printing on a pre-fabricated mold with a T-intersection. For the electrode layer, a stencil design is printed directly on the printing tray and covered with a piece of transparent glass. Microwire electrodes are adhered over the glass piece (guided by underlaying stencil) and a CAD design of the electrode layer is then printed on top of the microwire electrode. After delamination from the glass after printing, the microwire is embedded in the printed piece, with the stencil design ensuring that alignment and positioning of the electrode is reproducible for each print. After a thermal bonding step between the channel layer and electrode layer, a complete electrophoresis device with integrated microelectrodes for amperometric detection results. It is shown that this approach enables different microwire electrodes (gold or platinum) and sizes (100 or 50 µm) to be integrated in an end-channel configuration with no gap between the electrode and the separation channel. These devices were used to separate a mixture of catecholamines and the effect of separation voltage on the potential voltage applied on the working electrode was also investigated. In addition, the effect of electrode size on the number of theoretical plates and limit of detection was studied. Finally, a device that contains different channel heights and a detection electrode was 3D-printed to integrate continuous flow sampling with microchip electrophoresis and amperometric detection.

2.
Anal Bioanal Chem ; 414(11): 3329-3339, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35274156

RESUMO

Use of 3D printing for microfluidics is a rapidly growing area, with applications involving cell culture in these devices also becoming of interest. 3D printing can be used to create custom-designed devices that have complex features and integrate different material types in one device; however, there are fewer studies studying the ability to culture cells on the various substrates that are available. This work describes the effect of PolyJet 3D-printing technology on cell culture of two cell lines, bovine pulmonary artery endothelial cells (BPAECs) and Madin-Darby Canine Kidney (MDCK) cells, on two different types of printed materials (VeroClear or MED610). It was found that untreated devices, when used for studies of 1 day or more, led to unsuccessful culture. A variety of device treatment methodologies were investigated, with the most success coming from the use of sodium hydroxide/sodium metasilicate solution. Devices treated with this cleaning step resulted in culture of BPAECs and MDCK cells that were more similar to what is obtained in traditional culture flasks (in terms of cell morphology, viability, and cell density). LC-MS/MS analysis (via Orbitrap MS) was used to determine potential leachates from untreated devices. Finally, the use of a fiber scaffold in the devices was utilized to further evaluate the treatment methodology and to also demonstrate the ability to perform 3D culture in such devices. This study will be of use for researchers wanting to utilize these or other cell types in PolyJet-based 3D-printed devices.


Assuntos
Células Endoteliais , Espectrometria de Massas em Tandem , Animais , Bovinos , Técnicas de Cultura de Células , Cromatografia Líquida , Cães , Impressão Tridimensional
3.
Analyst ; 145(9): 3274-3282, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242194

RESUMO

In this paper, we describe how PolyJet 3D printing technology can be used to fully integrate electrode materials into microfluidic devices during the print process. This approach uses stacked printing (separate printing steps and stage drops) with liquid support to result in devices where electrodes and a capillary fluidic connection are directly integrated and ready to use when printing is complete. A key feature of this approach is the ability to directly incorporate electrode materials into the print process so that the electrode(s) can be placed anywhere in the channel (at any height). We show that this can be done with a single electrode or an electrode array (which led to increases in signal). In both cases, we found that a middle electrode configuration leads to a significant increase in the sensitivity, as opposed to more traditional bottom channel placement. Since the electrode is embedded in the device, in situ platinum black deposition was performed to aid in the detection of nitric oxide. Finally, a generator-collector configuration with an opposed counter electrode was made by placing two working electrodes ∼750 µm apart (in the middle of the channel) and a platinum counter electrode at the bottom of the channel. The utility of this configuration was demonstrated by dual electrode detection of catechol. This 3D printing approach affords robust electrochemical detection schemes with new electrode configurations being possible in a manner that also increases the ease of use and transferability of the 3D printed devices with integrated electrode materials.

4.
Anal Chem ; 91(10): 6910-6917, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31035747

RESUMO

Microfluidic devices have historically been prepared using fabrication techniques that often include photolithography and/or etching. Recently, additive manufacturing technologies, commonly known as 3D-printing, have emerged as fabrication tools for microfluidic devices. Unfortunately, PolyJet 3D-printing, which utilizes a photocurable resin that can be accurately printed, requires the use of support material for any designed void space internal to the model. Removing the support material from the printed channels is difficult in small channels with single dimensions of less than ∼200 µm and nearly impossible to remove from designs that contain turns or serpentines. Here, we describe techniques for printing channels ranging in cross sections from 0.6 cm × 1.5 cm to 125 µm × 54 µm utilizing commercially available PolyJet printers that require minimal to no postprocessing to form sealed channels. Specifically, printer software manipulation allows printing of one model with an open channel or void that is sealed with either a viscous liquid or a polycarbonate membrane (no commercially available support material). The printer stage is then adjusted and a second model is printed directly on top of the first model with the selected support system. Both the liquid-fill and the membrane method have enough structural integrity to support the printing resin while it is being cured. Importantly, such complex channel geometries as serpentine and Y-mixers can be designed, printed, and in use in under 2 h. We demonstrate device utility by measuring ATP release from flowing red blood cells using a luciferin/luciferase chemiluminescent assay that involves on-chip mixing and optical detection.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Impressão Tridimensional , 2-Propanol/química , Trifosfato de Adenosina/sangue , Epoprostenol/análogos & derivados , Epoprostenol/farmacologia , Eritrócitos/efeitos dos fármacos , Glicerol/química , Humanos , Técnicas Analíticas Microfluídicas/métodos , Software
5.
Anal Bioanal Chem ; 410(12): 3025-3035, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29536154

RESUMO

We present an insert-based approach to fabricate scalable and multiplexable microfluidic devices for 3D cell culture and integration with downstream detection modules. Laser-cut inserts with a layer of electrospun fibers are used as a scaffold for 3D cell culture, with the inserts being easily assembled in a 3D-printed fluidic device for flow-based studies. With this approach, the number and types of cells (on the inserts) in one fluidic device can be customized. Moreover, after an investigation (i.e., stimulation) under flowing conditions, the cell-laden inserts can be removed easily for subsequent studies including imaging and cell lysis. In this paper, we first discuss the fabrication of the device and characterization of the fibrous inserts. Two device designs containing two (channel width = 260 µm) and four (channel width = 180 µm) inserts, respectively, were used for different experiments in this study. Cell adhesion on the inserts with flowing media through the device was tested by culturing endothelial cells. Macrophages were cultured and stimulated under different conditions, the results of which indicate that the fibrous scaffolds under flow conditions result in dramatic effects on the amount and kinetics of TNF-α production (after LPS stimulation). Finally, we show that the cell module can be integrated with a downstream absorbance detection scheme. Overall, this technology represents a new and versatile way to culture cells in a more in vivo fashion for in vitro studies with online detection modules. Graphical abstract This paper describes an insert-based microfluidic device for 3D cell culture that can be easily scaled, multiplexed, and integrated with downstream analytical modules.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Análise de Célula Única/instrumentação , Animais , Bovinos , Adesão Celular , Linhagem Celular , Células Endoteliais/citologia , Desenho de Equipamento , Macrófagos/citologia , Camundongos , Impressão Tridimensional , Células RAW 264.7
6.
Analyst ; 141(3): 862-9, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26649363

RESUMO

Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 µm platinum and 1 mm glassy carbon. Using the 500 µm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 µM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Eletrodos , Dispositivos Lab-On-A-Chip , Impressão Tridimensional , Catecóis/análise , Dopamina/análise , Eletrodos/economia , Epinefrina/análise , Desenho de Equipamento/métodos , Dispositivos Lab-On-A-Chip/economia , Limite de Detecção
7.
Analyst ; 141(18): 5311-20, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27373715

RESUMO

Organs-on-a-chip has emerged as a powerful tool for pharmacological and physiological studies. A key part in the construction of such a model is the ability to pattern or culture cells in a biomimetic fashion. Most of the reported cells-on-a-chip models integrate cells on a flat surface, which does not accurately represent the extracellular matrix that they experience in vivo. Electrospinning, a technique used to generate sub-micron diameter polymer fibers, has been used as an in vitro cell culture substrate and for tissue engineering applications. Electrospinning of fibers directly into a fully sealed fluidic channel using a conventional setup has not been possible due to issues of confining the fibers into a discrete network. In this work, a dynamic focusing method was developed, with this approach enabling direct deposition of electrospun fibers into a fully sealed fluidic channel, to act as a matrix for cell culture and subsequent studies under continuous flowing conditions. Scanning electron microscopy of electrospun polycaprolactone fibers shows that this method enables the formation of fibrous layers on the inner wall of a 3D-printed fluidic device (mean fiber size = 1.6 ± 0.6 µm and average pore size = 113 ± 19 µm(2)). Cells were able to be cultured in this 3D scaffold without the addition of adhesion proteins. Media was pumped through the channel at high flow rates (up to 400 µL min(-1)) during a dynamic cell culture process and both the fibers and the cells were found to be strongly adherent. A PDMS fluidic device was also prepared (from a 3D printed mold) and coated with polycaprolactone fibers. The PDMS device enables optical detection and confocal imaging of cultured cells on the fibers. Finally, macrophages were cultured in the devices to study how the fibrous scaffold can affect cell behavior. It was found that under lipopolysaccharide stimulation, macrophages cultured on PCL fibers inside of a channel secreted significantly more cytokines than those cultured on a thin layer of PCL in a channel or directly on the inner channel wall. Overall, this study represents a new approach for in vitro cell studies, where electrospinning can be used to easily and quickly create 3D scaffolds that can improve the culture conditions in microfluidic devices.


Assuntos
Dispositivos Lab-On-A-Chip , Impressão Tridimensional , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Células Cultivadas , Fibroblastos/citologia , Humanos , Camundongos , Poliésteres , Células RAW 264.7/citologia , Engenharia Tecidual
8.
Anal Chem ; 87(8): 4347-55, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25815795

RESUMO

The combination of hydrodynamic focusing with embedded capillaries in a microfluidic device is shown to enable both surface enhanced Raman scattering (SERS) and electrochemical characterization of analytes at nanomolar concentrations in flow. The approach utilizes a versatile polystyrene device that contains an encapsulated microelectrode and fluidic tubing, which is shown to enable straightforward hydrodynamic focusing onto the electrode surface to improve detection. A polydimethyslsiloxane (PDMS) microchannel positioned over both the embedded tubing and SERS active electrode (aligned ∼200 µm from each other) generates a sheath flow that confines the analyte molecules eluting from the embedded tubing over the SERS electrode, increasing the interaction between the Riboflavin (vitamin B2) and the SERS active electrode. The microfluidic device was characterized using finite element simulations, amperometry, and Raman experiments. This device shows a SERS and amperometric detection limit near 1 and 100 nM, respectively. This combination of SERS and amperometry in a single device provides an improved method to identify and quantify electroactive analytes over either technique independently.


Assuntos
Técnicas Eletroquímicas , Técnicas Analíticas Microfluídicas , Riboflavina/análise , Eletrodos , Hidrodinâmica , Poliestirenos/química , Riboflavina/metabolismo , Análise Espectral Raman , Propriedades de Superfície
9.
Analyst ; 139(22): 5686-94, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25105251

RESUMO

In this paper, we describe the development of a planar, pillar array device that can be used to image either side of a tunable membrane, as well as sample and detect small molecules in a cell-free region of the microchip. The pores are created by sealing two parallel PDMS microchannels (a cell channel and a collector channel) over a gold pillar array (5 or 10 µm in height), with the device being characterized and optimized for small molecule cross-over while excluding a flowing cell line (here, red blood cells, RBCs). The device was characterized in terms of the flow rate dependence of analyte cross-over and cell exclusion as well as the ability to perform amperometric detection of catechol and nitric oxide (NO) as they cross-over into the collector channel. Using catechol as the test analyte, the limits of detection (LOD) of the cross-over for the 10 µm and 5 µm pillar array heights were shown to be 50 nM and 105 nM, respectively. Detection of NO was made possible with a glassy carbon detection electrode (housed in the collector channel) modified with Pt-black and Nafion, to enhance sensitivity and selectivity, respectively. Reproducible cross-over of NO as a function of concentration resulted in a linear correlation (r(2) = 0.995, 7.6-190 µM), with an LOD for NO of 230 nM on the glassy carbon/Pt-black/0.05% Nafion electrode. The applicability of the device was demonstrated by measuring the NO released from hypoxic RBCs, with the device allowing the released NO to cross-over into a cell free channel where it was detected in close to real-time. This type of device is an attractive alternative to the use of 3-dimensional devices with polycarbonate membranes, as either side of the membrane can be imaged and facile integration of electrochemical detection is possible.


Assuntos
Eletrodos , Microfluídica/instrumentação , Catecóis/análise , Eritrócitos/química , Análise de Injeção de Fluxo , Humanos , Limite de Detecção , Óxido Nítrico/análise
10.
Anal Chem ; 85(12): 5622-6, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23687961

RESUMO

Fluidic devices fabricated using conventional soft lithography are well suited as prototyping methods. Three-dimensional (3D) printing, commonly used for producing design prototypes in industry, allows for one step production of devices. 3D printers build a device layer by layer based on 3D computer models. Here, a reusable, high throughput, 3D printed fluidic device was created that enables flow and incorporates a membrane above a channel in order to study drug transport and affect cells. The device contains 8 parallel channels, 3 mm wide by 1.5 mm deep, connected to a syringe pump through standard, threaded fittings. The device was also printed to allow integration with commercially available membrane inserts whose bottoms are constructed of a porous polycarbonate membrane; this insert enables molecular transport to occur from the channel to above the well. When concentrations of various antibiotics (levofloxacin and linezolid) are pumped through the channels, approximately 18-21% of the drug migrates through the porous membrane, providing evidence that this device will be useful for studies where drug effects on cells are investigated. Finally, we show that mammalian cells cultured on this membrane can be affected by reagents flowing through the channels. Specifically, saponin was used to compromise cell membranes, and a fluorescent label was used to monitor the extent, resulting in a 4-fold increase in fluorescence for saponin treated cells.

11.
Electrophoresis ; 34(14): 2092-100, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670668

RESUMO

In this paper, we present two new methodologies of improving the performance of microchip-based electrochemical detection in microfluidic devices. The first part describes the fabrication and characterization of epoxy-embedded gold microelectrode arrays that are evenly spaced and easily modified. Electrodepositions using a gold plating solution can be performed on the electrodes to result in a 3D pillar array that, when used with microchip-based flow injection analysis, leads to an eightfold increase in signal (when compared to a single electrode), with the LOD for catechol being 4 nM. For detecting analytically challenging molecules such as nitric oxide (NO), platinization of electrodes is commonly used to increase the sensitivity. It is shown here that microchip devices containing either the pillar arrays or more traditional glassy carbon electrodes can be modified with platinum black (Pt-black) for NO detection. In the case of using glassy carbon electrodes for NO detection, integration of the resulting platinized electrode with microchip-based flow analysis resulted in a ten times signal increase relative to use of a bare glassy carbon electrode. In addition, it is demonstrated that these electrodes can be coated with Nafion to impart selectivity toward NO over interfering species such as nitrite. The LOD for NO when using the Pt-black /Nafion-coated glassy carbon electrode was 9 nM. These electrodes can also be embedded in a polystyrene substrate, with the applicability of these sensitive and selective electrodes being demonstrated by monitoring the adenosine triphosphate-mediated release of NO from endothelial cells immobilized in a microfluidic network without any adhesion factor.


Assuntos
Análise em Microsséries/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Óxido Nítrico/análise , Platina/química , Animais , Técnicas Biossensoriais/instrumentação , Catecóis/análise , Bovinos , Linhagem Celular , Células Endoteliais/metabolismo , Limite de Detecção , Microeletrodos , Óxido Nítrico/metabolismo
12.
Analyst ; 138(1): 137-43, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23120748

RESUMO

In Part II of this series describing the use of polystyrene (PS) devices for microfluidic-based cellular assays: various cellular types and detection strategies are employed to determine three fundamental assays often associated with cells. Specifically, using either integrated electrochemical sensing or optical measurements with a standard multi-well plate reader, cellular uptake, production, or release of important cellular analytes are determined on a PS-based device. One experiment involved the fluorescence measurement of nitric oxide (NO) produced within an endothelial cell line following stimulation with ATP. The result was a four-fold increase in NO production (as compared to a control), with this receptor-based mechanism of NO production verifying the maintenance of cell receptors following immobilization onto the PS substrate. The ability to monitor cellular uptake was also demonstrated by optical determination of Ca(2+) into endothelial cells following stimulation with the Ca(2+) ionophore A20317. The result was a significant increase (42%) in the calcium uptake in the presence of the ionophore, as compared to a control (17%) (p < 0.05). Finally, the release of catecholamines from a dopaminergic cell line (PC 12 cells) was electrochemically monitored, with the electrodes being embedded into the PS-based device. The PC 12 cells had better adherence on the PS devices, as compared to use of PDMS. Potassium-stimulation resulted in the release of 114 ± 11 µM catecholamines, a significant increase (p < 0.05) over the release from cells that had been exposed to an inhibitor (reserpine, 20 ± 2 µM of catecholamines). The ability to successfully measure multiple analytes, generated in different means from various cells under investigation, suggests that PS may be a useful material for microfluidic device fabrication, especially considering the enhanced cell adhesion to PS, its enhanced rigidity/amenability to automation, and its ability to enable a wider range of analytes to be investigated, even analytes with a high degree of hydrophobicity.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Poliestirenos/química , Animais , Transporte Biológico , Cálcio/metabolismo , Catecolaminas/metabolismo , Bovinos , Adesão Celular , Dimetilpolisiloxanos/química , Eletroquímica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Espaço Intracelular/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Óxido Nítrico/biossíntese , Células PC12 , Artéria Pulmonar/citologia , Ratos
13.
Analyst ; 138(1): 129-36, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23120747

RESUMO

In Part I of a two-part series, we describe a simple and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and pipets for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high-throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Poliestirenos/química , Dimetilpolisiloxanos/química , Eletroquímica , Dispositivos Ópticos
14.
Anal Bioanal Chem ; 405(10): 3013-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23340999

RESUMO

The use of microchip devices to study cellular systems is a rapidly growing research area. There are numerous advantages of using on-chip integrated electrodes to monitor various cellular processes. The purpose of this review is to give examples of advancements in microchip-based cellular analysis, specifically where electrochemistry is used for the detection scheme. These examples include on-chip detection of single-cell quantal exocytosis, electrochemical analysis of intracellular contents, the ability to integrate cell culture/immobilization with electrochemistry, and the use of integrated electrodes to ensure cell confluency in longer-term cell culture experiments. A perspective on future trends in this area is also given.


Assuntos
Células/química , Técnicas Eletroquímicas/métodos , Procedimentos Analíticos em Microchip/métodos , Animais , Técnicas Eletroquímicas/instrumentação , Humanos , Dispositivos Lab-On-A-Chip
15.
ACS Omega ; 7(15): 13362-13370, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474767

RESUMO

In this work, we demonstrate the ability to use micromolds along with a stacked three-dimensional (3D) printing process on a commercially available PolyJet printer to fabricate microchip electrophoresis devices that have a T-intersection, with channel cross sections as small as 48 × 12 µm2 being possible. The fabrication process involves embedding removable materials or molds during the printing process, with various molds being possible (wires, brass molds, PDMS molds, or sacrificial materials). When the molds are delaminated/removed, recessed features complementary to the molds are left in the 3D prints. A thermal lab press is used to bond the microchannel layer that also contains printed reservoirs against another solid 3D-printed part to completely seal the microchannels. The devices exhibited cathodic electroosmotic flow (EOF), and mixtures of fluorescein isothiocyanate isomer I (FITC)-labeled amino acids were successfully separated on these 3D-printed devices using both gated and pinched electrokinetic injections. While this application is focused on microchip electrophoresis, the ability to 3D-print against molds that can subsequently be removed is a general methodology to decrease the channel size for other applications as well as to possibly integrate 3D printing with other production processes.

16.
Anal Chim Acta ; 1221: 340166, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934386

RESUMO

In this paper, we describe the use of 3D printed devices for both static and flow studies that contain electrospun collagen scaffolds and can accommodate transepithelial/transendothelial electrical resistance (TEER) measurements. Electrospinning was used to create the collagen scaffold, followed by an optimized 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS) cross-linking procedure to produce stable collagen fibers that are similar in size to fibers in vivo. LC/MS was used to study the leaching of solvent and NHS from the scaffold, with several rinsing steps being shown to eliminate the leaching and promote the culture of Madin-Darby Canine Kidney (MDCK) epithelial cells on the scaffold. Both static and flow 2-part devices were successfully fabricated by 3D printing using either VeroClear or MED610 material (PolyJet printing) and assembling the scaffold between laser cut Teflon gaskets. The devices were designed to easily accommodate commonly used STX2 chopstick electrodes for TEER measurements. A detailed comparison was made between the use of collagen scaffolds vs other electrospun materials for cell culture. The collagen extracellular matrix model displayed a high barrier functionality for up to 7 days. In addition, a different 3D printed device with a collagen scaffold is described to incorporate continuous flow and replenishment of media under the cell layer in a manner that also enables periodic recording of TEER measurements. Overall, this work shows that the combination of biological ECM materials such as collagen into microfluidic devices that incorporate flow have great potential to form more realistic cell culture models in areas such as blood brain barrier research.


Assuntos
Colágeno , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Cães , Impedância Elétrica , Impressão Tridimensional , Engenharia Tecidual
17.
Anal Methods ; 14(33): 3171-3179, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35959771

RESUMO

In this paper, a 3D-printed multi-modal device was designed and fabricated to simultaneously detect nitric oxide (NO) and adenosine triphosphate (ATP) in red blood cell suspensions prepared from whole blood. Once a sample was injected into the device, NO was first detected (via amperometry) using a three-electrode, dual-opposed, electrode configuration with a platinum-black/Nafion coated gold working electrode. After in-line amperometric detection of NO, ATP was detected via a chemiluminescence reaction, with a luciferin/luciferase solution continuously pumped into an integrated mixing T and the resulting light being measured with a PMT underneath the channel. The device was optimized for mixing/reaction conditions, limits of detection (40 nM for NO and 30 nM for ATP), and sensitivity. This device was used to determine the basal (normoxic) levels of NO and ATP in red blood cells, as well as an increase in concentration of both analytes under hypoxic conditions. Finally, the effect of storing red blood cells in a commonly used storage solution was also investigated by monitoring the production of NO and ATP over a three-week storage time.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Trifosfato de Adenosina/farmacologia , Eritrócitos , Técnicas Analíticas Microfluídicas/métodos , Óxido Nítrico/farmacologia , Impressão Tridimensional
18.
Anal Chem ; 83(15): 5996-6003, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21718004

RESUMO

Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to "desegment" the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies in which off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection.


Assuntos
Técnicas Eletroquímicas/métodos , Eletroforese em Microchip/métodos , Animais , Catecolaminas/metabolismo , Linhagem Celular , Eletrodos , Interações Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Ratos
19.
Anal Chem ; 83(11): 4296-301, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21513343

RESUMO

Transendothelial electronic resistance (TEER) measurements are performed across a cell layer immobilized on a microfluidic device that also enables the cell layer to interact with a flowing stream of red blood cells (RBCs). A bipolar pulsed square wave potential is applied across a monolayer of bovine pulmonary artery endothelial cells, and the resulting current response is measured and integrated. The overall impedance of the cell layer provides an indicator of cell layer integrity. After cell seeding on the device, a decrease in TEER signal from 22.3 ± 1.6 µC to 3.5 ± 0.4 µC (corresponding to a resistance of 40.9 ± 2.9 Ω·cm(2) to 259.1 ± 27.4 Ω·cm(2)) was observed after 8 h of cell growth. Intracellular nitric oxide (NO) production by the immobilized endothelial cells that had reached confluence was 34% higher than those cells that had not reached confluence, as indicated by the integrated TEER system. Importantly, this NO production by the confluent endothelium was stimulated by ATP released from RBCs flowing under the endothelial cells. In this construct, the described microfluidic device enables both a TEER-based evaluation of cell layer integrity and molecularly communicated interactions of these cells with a flowing stream of blood components.


Assuntos
Endotélio Vascular/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Animais , Bovinos , Técnicas Eletroquímicas/métodos , Eletrodos , Células Endoteliais/metabolismo , Eritrócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Óxido Nítrico/metabolismo
20.
Electrophoresis ; 32(22): 3121-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22038707

RESUMO

This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy-embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified as is done with electrochemical flow cells used in liquid chromatography.


Assuntos
Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Resinas Epóxi/química , Catecóis/análise , Catecóis/química , Dopamina/análise , Dopamina/química , Eletrodos , Epinefrina/análise , Epinefrina/química , Desenho de Equipamento , Microdiálise , Paládio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA