Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(2): e0132423, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38206004

RESUMO

Invasive candidiasis is a major hospital-acquired infection. Usually, echinocandins are considered first-line treatment. However, resistant phenotypes have emerged. Ibrexafungerp (IBX) is a new antifungal substance with potent anti-Candida activity. We challenged IBX with a library of 192 pheno-/genotypically echinocandin-resistant Candida isolates, focusing on the substance susceptibility, its activity on certain FKS hotspot (HS) mutated strains, and applying WTULs (wild-type upper limits). Therefore, a 9-year-old strain and patient data collection provided by the German National Reference Center for Invasive Fungal Infections were analyzed. Species identification was confirmed through ITS-sequencing. Molecular susceptibility testing was performed by sequencing HS of the FKS gene. Anidulafungin (AND) and IBX EUCAST-broth-microdilution was conducted. The four most common echinocandin-resistance mediating mutations were found in Candida glabrata [112/192 isolates; F659-(43×) and S663-(48×)] and Candida albicans [63/192 isolates; F641-(15×) and S645-(39×)]. Mutations at the HS-start sequence were associated with higher IBX MIC-values (F659 and F641 (MIC 50/90 mg/L: >4/>4 and 2/4 mg/L) in comparison to AND (F659 and F641 (MIC 50/90: 1/4 and 0.25/1 mg/L). MIC-values in HS-center mutations were almost equal [MIC50/90 in S663: 2/4 (AND and IBX); in S645: 0.5/1 (AND) and 0.25/1 (IBX) mg/L]. In total, 61 vs 78 of 192 echinocandin-resistant isolates may be classified as IBX wild type by applying WTULs, whereas the most prominent effect was seen in C. albicans [48% (30/63) vs 70% (44/63)]. IBX shows in vitro activity against echinocandin-resistant Candida and thus is an addition to the antifungal armory. However, our data suggest that this effect is more pronounced in C. albicans and strains harboring mutations, affecting the HS-center.


Assuntos
Antifúngicos , Equinocandinas , Triterpenos , Humanos , Criança , Antifúngicos/farmacologia , Candida , Glicosídeos , Candida albicans , Candida glabrata , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
2.
Int J Med Microbiol ; 314: 151602, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280372

RESUMO

PURPOSE: Fusarium keratitis is a severe infection of the anterior eye, frequently leading to keratoplasty or surgical removal of the affected eye. A major risk factor for infection is the use of contact lenses. Inadequate hygiene precautions and mold-growth permissive storage fluids are important risk factors for fungal keratitis. The aim of this study was to comparatively analyze contact lens storage fluids disinfection efficacy against Fusarium species. METHODS: Eleven commercially available storage fluids were tested. The storage fluids were classified according to their active ingredients myristamidopropyldimethylamine (Aldox), polyhexanide and hydrogen peroxide. Efficacy was tested against isolates belonging to the Fusarium solani and Fusarium oxysporum species complexes as the most common agents of mould keratitis. Tests were carried out based on DIN EN ISO 14729. RESULTS: All Aldox and hydrogen peroxide (H2O2) based fluids were effective against Fusarium spp., while the majority of polyhexanide based storage fluids showed only limited or no antifungal effects. Efficacy of polyhexanide could be restored by the addition of the pH-regulating agent tromethamine - an additive component in one commercially available product. CONCLUSIONS: In summary, the use of Aldox- or hydrogen peroxide-based storage fluids may reduce the risk of Fusarium keratitis, while polyhexanide-based agents largely lack efficacy against Fusarium.


Assuntos
Biguanidas , Lentes de Contato , Infecções Oculares Fúngicas , Fusarium , Ceratite , Propilaminas , Antifúngicos/farmacologia , Peróxido de Hidrogênio/farmacologia , Ceratite/prevenção & controle , Ceratite/microbiologia , Lentes de Contato/microbiologia , Infecções Oculares Fúngicas/microbiologia
3.
Mycoses ; 67(4): e13723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38551121

RESUMO

BACKGROUND: The emergence of the pathogenic yeast Candida auris is of global concern due to its ability to cause hospital outbreaks and develop resistance against all antifungal drug classes. Based on published data for baker's yeast Saccharomyces cerevisiae, sphingolipid biosynthesis, which is essential for maintaining membrane fluidity and formation of lipid rafts, could offer a target for additive treatment. METHODS: We analysed the susceptibility of C. auris to myriocin, which is an inhibitor of the de novo synthesis of sphingolipids in eukaryotic cells in comparison to other Candida species. In addition, we combined sublethal concentrations of myriocin with the antifungal drugs amphotericin B and fluconazole in E-tests. Consequently, the combinatory effects of myriocin and amphotericin B were examined in broth microdilution assays. RESULTS: Myriocin-mediated inhibition of the sphingolipid biosynthesis affected the growth of C. auris. Sublethal myriocin concentrations increased fungal susceptibility to amphotericin B. Isolates which are phenotypically resistant (≥2 mg/L) to amphotericin B became susceptible in presence of myriocin. However, addition of myriocin had only limited effects onto the susceptibility of C. auris against fluconazole. CONCLUSIONS: Our results show that inhibition of de novo sphingolipid biosynthesis increases the susceptibility of C. auris to amphotericin B. This may potentially enhance antifungal treatment options fighting this often resistant yeast pathogen.


Assuntos
Anfotericina B , Antifúngicos , Ácidos Graxos Monoinsaturados , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anfotericina B/farmacologia , Fluconazol/farmacologia , Candida auris , Candida , Saccharomyces cerevisiae , Testes de Sensibilidade Microbiana , Esfingolipídeos/farmacologia
4.
Emerg Infect Dis ; 25(9): 1763-1765, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31223105

RESUMO

The emerging yeast Candida auris has disseminated worldwide. We report on 7 cases identified in Germany during 2015-2017. In 6 of these cases, C. auris was isolated from patients previously hospitalized abroad. Whole-genome sequencing and epidemiologic analyses revealed that all patients in Germany were infected with different strains.


Assuntos
Antifúngicos/uso terapêutico , Candida/isolamento & purificação , Candidíase/epidemiologia , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Candidíase/microbiologia , Esquema de Medicação , Alemanha/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Viagem , Sequenciamento Completo do Genoma
5.
Mol Microbiol ; 103(4): 595-617, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27623739

RESUMO

Morphogenesis in Candida albicans requires hyphal initiation and maintenance, and both processes are regulated by the fungal quorum sensing molecule (QSM) farnesol. We show that deletion of C. albicans EED1, which is crucial for hyphal extension and maintenance, led to a dramatically increased sensitivity to farnesol, and thus identified the first mutant hypersensitive to farnesol. Furthermore, farnesol decreased the transient filamentation of an eed1Δ strain without inducing cell death, indicating that two separate mechanisms mediate quorum sensing and cell lysis by farnesol. To analyze the cause of farnesol hypersensitivity we constructed either hyperactive or deletion mutants of factors involved in farnesol signaling, by introducing the hyperactive RAS1G13V or pADH1-CYR1CAT allele, or deleting CZF1 or NRG1 respectively. Neither of the constructs nor the exogenous addition of dB-cAMP was able to rescue the farnesol hypersensitivity, highlighting that farnesol mediates its effects not only via the cAMP pathway. Interestingly, the eed1Δ strain also displayed increased farnesol production. When eed1Δ was grown under continuous medium flow conditions, to remove accumulating QSMs from the supernatant, maintenance of eed1Δ filamentation, although not restored, was significantly prolonged, indicating a link between farnesol sensitivity, production, and the hyphal maintenance-defect in the eed1Δ mutant strain.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Farneseno Álcool/metabolismo , Proteínas Fúngicas/genética , Hifas/crescimento & desenvolvimento , Percepção de Quorum/fisiologia , Candida albicans/genética , AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Curr Genet ; 63(6): 965-972, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28493119

RESUMO

Adaptation to the changing environmental CO2 levels is essential for all living cells. In particular, microorganisms colonizing and infecting the human body are exposed to highly variable concentrations, ranging from atmospheric 0.04 to 5% and more in blood and specific host niches. Carbonic anhydrases are highly conserved metalloenzymes that enable fixation of CO2 by its conversion into bicarbonate. This process is not only crucial to ensure the supply of adequate carbon amounts for cellular metabolism, but also contributes to several signaling processes in fungi, including morphology and communication. The fungal specific carbonic anhydrase gene NCE103 is transcribed in response to CO2 availability. As recently shown, this regulation relies on the ATF/CREB transcription factor Cst6 and the AGC family protein kinase Sch9. Here, we review the regulatory mechanisms which control NCE103 expression in the model organism Saccharomyces cerevisiae and the pathogenic yeasts Candida albicans and Candida glabrata and discuss which additional factors might contribute in this novel CO2 sensing cascade.


Assuntos
Candida albicans/metabolismo , Candida glabrata/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/metabolismo , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Adaptação Fisiológica/genética , Bicarbonatos/metabolismo , Biotransformação/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida glabrata/genética , Candida glabrata/crescimento & desenvolvimento , Ciclo do Carbono/genética , Anidrases Carbônicas/metabolismo , Sequência Conservada , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
7.
Cell Microbiol ; 18(7): 889-904, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26752615

RESUMO

Intestinal epithelial cells (IEC) form a tight barrier to the gut lumen. Paracellular permeability of the intestinal barrier is regulated by tight junction proteins and can be modulated by microorganisms and other stimuli. The polymorphic fungus Candida albicans, a frequent commensal of the human mucosa, has the capacity of traversing this barrier and establishing systemic disease within the host. Infection of polarized C2BBe1 IEC with wild-type C. albicans led to a transient increase of transepithelial electric resistance (TEER) before subsequent barrier disruption, accompanied by a strong decline of junctional protein levels and substantial, but considerably delayed cytotoxicity. Time-resolved microarray-based transcriptome analysis of C. albicans challenged IEC revealed a prominent role of NF-κB and MAPK signalling pathways in the response to infection. Hence, we inferred a gene regulatory network based on differentially expressed NF-κB and MAPK pathway components and their predicted transcriptional targets. The network model predicted activation of GDF15 by NF-κB was experimentally validated. Furthermore, inhibition of NF-κB activation in C. albicans infected C2BBe1 cells led to enhanced cytotoxicity in the epithelial cells. Taken together our study identifies NF-κB activation as an important protective signalling pathway in the response of epithelial cells to C. albicans.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NF-kappa B/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Linhagem Celular , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade nas Mucosas/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , NF-kappa B/genética , Estresse Fisiológico/fisiologia , Proteínas de Junções Íntimas/metabolismo
8.
J Immunol ; 194(3): 1199-210, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539819

RESUMO

Polymorphonuclear neutrophilic granulocytes (PMN) as cellular components of innate immunity play a crucial role in the defense against systemic Candida albicans infection. To analyze stimuli that are required for PMN activity during C. albicans infection in a situation similar to in vivo, we used a human whole-blood infection model. In this model, PMN activation 10 min after C. albicans infection was largely dependent on the anaphylatoxin C5a. Most importantly, C5a enabled blood PMN to overcome filament-restricted recognition of C. albicans and allowed efficient elimination of nonfilamentous C. albicans cph1Δ/efg1Δ from blood. Major PMN effector mechanisms, including oxidative burst, release of secondary granule contents and initial fungal phagocytosis could be prevented by blocking C5a receptor signaling. Identical effects were achieved using a humanized Ab specifically targeting human C5a. Phagocytosis of C. albicans 10 min postinfection was mediated by C5a-dependent enhancement of CD11b surface expression on PMN, thus establishing the C5a-C5aR-CD11b axis as a major modulator of early anti-Candida immune responses in human blood. In contrast, phagocytosis of C. albicans by PMN 60 min postinfection occurred almost independently of C5a and mainly contributed to activation of phagocytically active PMN at later time points. Our results show that C5a is a critical mediator in human blood during C. albicans infection.


Assuntos
Complemento C5a/imunologia , Fungos/imunologia , Micoses/imunologia , Neutrófilos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígeno CD11b/metabolismo , Candida albicans/imunologia , Candidíase/imunologia , Complemento C5a/antagonistas & inibidores , Complemento C5a/metabolismo , Humanos , Micoses/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Ativação de Neutrófilo/imunologia , Neutrófilos/metabolismo , Fagocitose/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Fatores de Tempo
9.
Nucleic Acids Res ; 43(3): 1392-406, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25586221

RESUMO

Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host-pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.


Assuntos
Candida glabrata/genética , Genes Fúngicos , Análise de Sequência de RNA/métodos , Transcriptoma , Regiões 3' não Traduzidas , Concentração de Íons de Hidrogênio , Íntrons , Nitrosação , Pseudogenes , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética
10.
PLoS Genet ; 10(12): e1004824, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474009

RESUMO

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Hifas/genética , Macrófagos/microbiologia , Virulência/genética , Animais , Candidíase/microbiologia , Candidíase/mortalidade , Parede Celular/genética , Parede Celular/metabolismo , Células Cultivadas , Evolução Molecular Direcionada , Regulação Fúngica da Expressão Gênica , Variação Genética , Hifas/patogenicidade , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados
11.
Cell Microbiol ; 17(9): 1259-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25850517

RESUMO

Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co-incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN-dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.


Assuntos
Candida albicans/imunologia , Candida glabrata/imunologia , Candidíase/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Ativação de Neutrófilo , Fagocitose , Animais , Candidíase/microbiologia , Candidíase/patologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Histocitoquímica , Humanos , Rim/microbiologia , Rim/patologia , Camundongos
12.
Int J Med Microbiol ; 305(7): 742-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26324013

RESUMO

From an eight-year-span, 99 Candida bloodstream isolates were collected at the University Hospital Wuerzburg, Germany. In this study, all strains were analyzed using molecular and phenotypic typing methods. Confirmatory species identification revealed three isolates that were initially diagnosed as C. albicans to be actually C. dubliniensis. Two isolates contained a mixed culture of C. albicans and C. glabrata, in one of the specimens both species could be separated while it was not possible to recover C. albicans in the other sample. The remaining 95 C. albicans isolates were profiled by multilocus sequence typing (MLST). Phylogenetic analyses showed a highly heterogenous collection of strains, associated with many different clades and constituting a set of new diploid sequence types (DST). For all strains with identical DST, patient data were reviewed for potential nosocomial transmission. In addition, all isolates were tested for their susceptibility to amphotericin B, caspofungin, fluconazole, itraconazole, posaconazole and voriconazole. No clinically relevant resistance could be detected. Furthermore, these data underline that correlation between minimal inhibitory concentrations for caspofungin and anidulafungin is low.


Assuntos
Antifúngicos/farmacologia , Candida albicans/classificação , Candida albicans/efeitos dos fármacos , Candidemia/microbiologia , Farmacorresistência Fúngica , Variação Genética , Candida albicans/genética , Candida albicans/isolamento & purificação , Análise por Conglomerados , Alemanha , Hospitais Universitários , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , Filogenia
13.
PLoS Comput Biol ; 10(2): e1003479, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586131

RESUMO

Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment-model-experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood.


Assuntos
Candidemia/imunologia , Imunidade Inata , Modelos Imunológicos , Candida albicans/imunologia , Candida albicans/patogenicidade , Candidemia/sangue , Candidemia/microbiologia , Biologia Computacional , Simulação por Computador , Infecção Hospitalar/sangue , Infecção Hospitalar/imunologia , Infecção Hospitalar/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Conceitos Matemáticos , Monócitos/imunologia , Método de Monte Carlo , Neutrófilos/imunologia , Fagocitose , Interface Usuário-Computador
14.
Nature ; 459(7247): 657-62, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19465905

RESUMO

Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.


Assuntos
Candida/fisiologia , Candida/patogenicidade , Evolução Molecular , Genoma Fúngico/genética , Reprodução/genética , Candida/classificação , Candida/genética , Códon/genética , Sequência Conservada , Diploide , Genes Fúngicos/genética , Meiose/genética , Polimorfismo Genético , Saccharomyces/classificação , Saccharomyces/genética , Virulência/genética
15.
J Cell Sci ; 124(Pt 22): 3871-83, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22100916

RESUMO

Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.


Assuntos
Ciclo Celular , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Linhagem Celular , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Humanos , Ligação Proteica
16.
Microbiol Spectr ; : e0025323, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786567

RESUMO

The formation of hyphae is a key virulence attribute of Candida albicans as they are required for adhesion to and invasion of host cells, and ultimately deep-tissue dissemination. Hyphae also secrete the peptide toxin candidalysin, which is crucial for destruction of host cell membranes. The peptide is derived from a precursor protein encoded by the gene ECE1 which is strongly induced during hyphal growth. Previous studies revealed a very complex regulation of this gene involving several transcription factors. However, the promoter of the gene is still not characterized. Here, we present a functional analysis of the intergenic region upstream of the ECE1 gene. Rapid amplification of cDNA ends (RACE)-PCR was performed to identify the 5' untranslated region, which has a size of 49 bp regardless of the hyphae-inducing condition. By using green fluorescent protein (GFP) reporter constructs we further defined a minimal promoter length of 1,500 bp which was verified by RT-qPCR. Finally, we identified the TATA element required for the expression of the gene. It is located 106 to 109 bp upstream of the ECE1 start codon. Our results illustrate that despite a very short 5' UTR, a relatively long promoter is required to secure ECE1 transcription, indicating a complex regulatory machinery tightly controlling the expression of the gene. IMPORTANCE In recent years it was shown that secretion of the toxic peptide candidalysin from hyphae of the major human fungal pathogen Candida albicans contributes heavily to its virulence. The peptide is derived from a precursor protein which is encoded by the ECE1 gene whose transcription is known to be closely associated with formation of hyphae. Here, we used a GFP reporter system to determine the length of the ECE1 promoter and were able to show that it has a minimal size of 1,500 bp. Surprisingly, the gene has a very short 5' UTR of only 49 bp. In accordance with this, the TATA element required for transcription is located 106 to 109 bp upstream of the start codon. This indicates that ECE1 expression is controlled by a very long promoter allowing a complex network of transcription factors to contribute to the gene's regulation.

17.
Comput Struct Biotechnol J ; 20: 608-614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116136

RESUMO

The human body is a dynamic ecosystem consisting of millions of microbes which are often comprised under the term microbiome. Compared to bacteria, which count for the overwhelming majority of the microbiome, the number of human-associated fungi is small and often underestimated. Nonetheless, they can be found in different host niches such as the gut, the oral cavity and the skin. The fungal community has several potential roles in health and disease of the human host. In this review we will focus on intestinal fungi and their interaction with the host as well as bacteria. We also summarize technical challenges and possible biases researchers must be aware of when conducting mycobiome analysis.

18.
Int J Med Microbiol ; 301(5): 417-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21555244

RESUMO

Oral infections with Candida albicans are very common diseases in even only mildly immunocompromised patients. By using genome-wide microarrays, in vitro infection models and samples from patients with pseudomembranous candidiasis, several genes have been identified which encode known and unknown fungal factors associated with oral infection. The expression of selected genes has been investigated via qRT-PCR in both in vitro models and in vivo samples from patients. Several lines of evidence suggest that fungal morphology plays a key role in adhesion to and invasion into oral epithelial cells and mutants lacking regulators of hyphal formation are attenuated in their ability to invade and damage epithelial cells. Adhesion is mediated by hyphal-associated factors such as Hwp1 and the Als adhesin family. Hyphal formation facilitates epithelial invasion via two routes: active penetration and induced endocytosis. While induced endocytosis is predominantly mediated by the adhesin and invasin Als3, active penetration seems to be supported by hydrolase activity and mechanical pressure. Expression profiles reflect the morphological switch and an adaptive response to neutral pH, non-glucose carbon sources, and nitrosative stress.


Assuntos
Candida albicans/patogenicidade , Candidíase Bucal/microbiologia , Interações Hospedeiro-Patógeno , Fatores de Virulência/biossíntese , Candida albicans/citologia , Candida albicans/genética , Candida albicans/metabolismo , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência
19.
JAC Antimicrob Resist ; 3(3): dlab122, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34377983

RESUMO

BACKGROUND: Candida glabrata is the second leading fungal pathogen causing candidaemia and invasive candidiasis in Europe. This yeast is recognized for its rapid ability to acquire antifungal drug resistance. OBJECTIVES: We systematically evaluated 176 C. glabrata isolates submitted to the German National Reference Center for Invasive Fungal Infections (NRZMyk) between 2015 and 2019 with regard to echinocandin and fluconazole susceptibility. METHODS: Susceptibility testing was performed using a reference protocol (EUCAST) and a range of commercial assays. Hot spot regions of the echinocandin target FKS genes were sequenced using Sanger sequencing. RESULTS: In total, 84 of 176 isolates were initially classified as anidulafungin-resistant based on EUCAST testing. Of those, 71 harboured mutations in the glucan synthase encoding FKS genes (13% in FKS1, 87% in FKS2). Significant differences in anidulafungin MICs were found between distinct mutation sites. 11 FKS wild-type (WT) isolates initially classified as resistant exhibited anidulafungin MICs fluctuating around the interpretation breakpoint upon re-testing with multiple assays. Two FKS WT isolates consistently showed high anidulafungin MICs and thus must be considered resistant despite the absence of target gene mutations. Over one-third of echinocandin-resistant strains displayed concomitant fluconazole resistance. Of those, isolates linked to bloodstream infection carrying a change at Ser-663 were associated with adverse clinical outcome. CONCLUSIONS: Resistant C. glabrata strains are emerging in Germany. Phenotypic echinocandin testing can result in misclassification of susceptible strains. FKS genotyping aids in detecting these strains, however, echinocandin resistance may occur despite a wild-type FKS genotype.

20.
Nat Commun ; 12(1): 3899, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162849

RESUMO

The ability of the fungal pathogen Candida albicans to undergo a yeast-to-hypha transition is believed to be a key virulence factor, as filaments mediate tissue damage. Here, we show that virulence is not necessarily reduced in filament-deficient strains, and the results depend on the infection model used. We generate a filament-deficient strain by deletion or repression of EED1 (known to be required for maintenance of hyphal growth). Consistent with previous studies, the strain is attenuated in damaging epithelial cells and macrophages in vitro and in a mouse model of intraperitoneal infection. However, in a mouse model of systemic infection, the strain is as virulent as the wild type when mice are challenged with intermediate infectious doses, and even more virulent when using low infectious doses. Retained virulence is associated with rapid yeast proliferation, likely the result of metabolic adaptation and improved fitness, leading to high organ fungal loads. Analyses of cytokine responses in vitro and in vivo, as well as systemic infections in immunosuppressed mice, suggest that differences in immunopathology contribute to some extent to retained virulence of the filament-deficient mutant. Our findings challenge the long-standing hypothesis that hyphae are essential for pathogenesis of systemic candidiasis by C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Animais , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/microbiologia , Divisão Celular/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Neutrófilos/metabolismo , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA