Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 145(7): 1116-28, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21703453

RESUMO

Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown. Here, we show that Tea4, which is normally deposited at cell tips by microtubules, is both necessary and, upon ectopic cortical localization, sufficient to recruit Pom1 to the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a basic region exhibiting direct lipid interaction. Pom1 autophosphorylates in this region to lower lipid affinity and promote membrane release. Tea4 triggers Pom1 plasma membrane association by promoting its dephosphorylation through the protein phosphatase 1 Dis2. We propose that local dephosphorylation induces Pom1 membrane association and nucleates a gradient shaped by the opposing actions of lateral diffusion and autophosphorylation-dependent membrane detachment.


Assuntos
Membrana Celular/metabolismo , Proteínas Quinases/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Ciclo Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência
2.
Semin Cell Dev Biol ; 133: 83-95, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35148940

RESUMO

Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fusão Celular , Transdução de Sinais , Feromônios/metabolismo
3.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35673994

RESUMO

In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forminas , Proteínas dos Microfilamentos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
4.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148799

RESUMO

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Anticorpos de Domínio Único , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Citocinese , Corantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticorpos de Domínio Único/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
5.
PLoS Biol ; 19(1): e3001067, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406066

RESUMO

To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.


Assuntos
Ciclo Celular/fisiologia , Fator de Acasalamento/fisiologia , Meiose/fisiologia , Zigoto/fisiologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos/fisiologia , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Meiose/genética , Organismos Geneticamente Modificados , Ploidias , Proteínas de Ligação a RNA/fisiologia , Recombinação Genética/fisiologia , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
6.
Nature ; 560(7718): 397-400, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089908

RESUMO

The ploidy cycle, which is integral to sexual reproduction, requires meiosis to halve chromosome numbers as well as mechanisms that ensure zygotes are formed by exactly two partners1-4. During sexual reproduction of the fungal model organism Schizosaccharomyces pombe, haploid P and M cells fuse to form a diploid zygote that immediately enters meiosis5. Here we reveal that rapid post-fusion reconstitution of a bipartite transcription factor blocks re-fertilization. We first identify mutants that undergo transient cell fusion involving cytosol exchange but not karyogamy, and show that this drives distinct cell fates in the two gametes. The P partner undergoes lethal haploid meiosis, whereas the M cell persists in mating. The zygotic transcription that drives meiosis is rapidly initiated first from the P parental genome, even in wild-type cells. This asymmetric gene expression depends on a bipartite complex formed post-fusion between the cytosolic M-cell-specific peptide Mi and the nuclear P-cell-specific homeobox protein Pi6,7, which captures Mi in the P nucleus. Zygotic transcription is thus poised to initiate in the P nucleus as fast as Mi reaches it after fusion, a design that we reconstruct using two synthetic interactors localized to the nucleus and the cytosol of two respective partner cells. Notably, delaying zygotic transcription-by postponing Mi expression or deleting its transcriptional target in the P genome-leads to zygotes fusing with additional gametes, thus forming polyploids and eventually aneuploid progeny. The signalling cascade to block re-fertilization shares components with, but bifurcates from, meiotic induction8-10. Thus, a cytoplasmic connection upon gamete fusion leads to asymmetric reconstitution of a bipartite transcription factor to rapidly block re-fertilization and induce meiosis, ensuring genome maintenance during sexual reproduction.


Assuntos
Fusão Celular , Meiose/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Aneuploidia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Diploide , Regulação Fúngica da Expressão Gênica , Haploidia , Poliploidia , Reprodução/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Transcrição Gênica
7.
Genes Dev ; 30(19): 2226-2239, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798845

RESUMO

Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone-GPCR (G-protein-coupled receptor)-MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell-cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Feromônios/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Comunicação Autócrina/fisiologia , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo
8.
PLoS Biol ; 18(1): e3000600, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978045

RESUMO

Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation.


Assuntos
Matriz Nuclear/fisiologia , Schizosaccharomyces , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas ras/fisiologia , Polaridade Celular/genética , Retroalimentação Fisiológica/fisiologia , Optogenética , Organismos Geneticamente Modificados , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína cdc42 de Ligação ao GTP/genética
9.
J Cell Sci ; 133(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31801797

RESUMO

Schizosaccharomyces pombe is a widely used model organism to study many aspects of eukaryotic cell physiology. Its popularity as an experimental system partially stems from the ease of genetic manipulations, where the innate homology-targeted repair is exploited to precisely edit the genome. While vectors to incorporate exogenous sequences into the chromosomes are available, most are poorly characterized. Here, we show that commonly used fission yeast vectors, which upon integration produce repetitive genomic regions, give rise to unstable genomic loci. We overcome this problem by designing a new series of stable integration vectors (SIVs) that target four different prototrophy genes. SIVs produce non-repetitive, stable genomic loci and integrate predominantly as single copy. Additionally, we develop a set of complementary auxotrophic alleles that preclude false-positive integration events. We expand the vector series to include antibiotic resistance markers, promoters, fluorescent tags and terminators, and build a highly modular toolbox to introduce heterologous sequences. Finally, as proof of concept, we generate a large set of ready-to-use, fluorescent probes to mark organelles and cellular processes with a wide range of applications in fission yeast research.This article has an associated First Person interview with the first author of the paper.


Assuntos
Vetores Genéticos/genética , Regiões Promotoras Genéticas/genética , Schizosaccharomyces/genética
10.
J Cell Sci ; 132(11)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152053

RESUMO

In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future.


Assuntos
Parede Celular/metabolismo , Quimiotaxia/fisiologia , Fusão de Membrana/fisiologia , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/fisiologia , Comunicação Celular , Fusão Celular , Polaridade Celular/fisiologia , Fatores Quimiotáticos/metabolismo , Feromônios/metabolismo
11.
PLoS Genet ; 13(4): e1006721, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28410370

RESUMO

In non-motile fungi, sexual reproduction relies on strong morphogenetic changes in response to pheromone signaling. We report here on a systematic screen for morphological abnormalities of the mating process in fission yeast Schizosaccharomyces pombe. We derived a homothallic (self-fertile) collection of viable deletions, which, upon visual screening, revealed a plethora of phenotypes affecting all stages of the mating process, including cell polarization, cell fusion and sporulation. Cell fusion relies on the formation of the fusion focus, an aster-like F-actin structure that is marked by strong local accumulation of the myosin V Myo52, which concentrates secretion at the fusion site. A secondary screen for fusion-defective mutants identified the myosin V Myo51-associated coiled-coil proteins Rng8 and Rng9 as critical for the coalescence of the fusion focus. Indeed, rng8Δ and rng9Δ mutant cells exhibit multiple stable dots at the cell-cell contact site, instead of the single focus observed in wildtype. Rng8 and Rng9 accumulate on the fusion focus, dependent on Myo51 and tropomyosin Cdc8. A tropomyosin mutant allele, which compromises Rng8/9 localization but not actin binding, similarly leads to multiple stable dots instead of a single focus. By contrast, myo51 deletion does not strongly affect fusion focus coalescence. We propose that focusing of the actin filaments in the fusion aster primarily relies on Rng8/9-dependent cross-linking of tropomyosin-actin filaments.


Assuntos
Proteínas de Ciclo Celular/genética , Miosina Tipo V/genética , Miosinas/genética , Proteínas de Schizosaccharomyces pombe/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Sequência de Aminoácidos/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Miosina Tipo V/metabolismo , Fenótipo , Ligação Proteica , Reprodução/genética , Schizosaccharomyces/genética , Deleção de Sequência
12.
PLoS Comput Biol ; 14(7): e1006317, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30028833

RESUMO

In mating fission yeast cells, sensing and response to extracellular pheromone concentrations occurs through an exploratory Cdc42 patch that stochastically samples the cell cortex before stabilizing towards a mating partner. Active Ras1 (Ras1-GTP), an upstream regulator of Cdc42, and Gap1, the GTPase-activating protein for Ras1, localize at the patch. We developed a reaction-diffusion model of Ras1 patch appearance and disappearance with a positive feedback by a Guanine nucleotide Exchange Factor (GEF) and Gap1 inhibition. The model is based on new estimates of Ras1-GDP, Ras1-GTP and Gap1 diffusion coefficients and rates of cytoplasmic exchange studied by FRAP. The model reproduces exploratory patch behavior and lack of Ras1 patch in cells lacking Gap1. Transition to a stable patch can occur by change of Gap1 rates constants or local increase of the positive feedback rate constants. The model predicts that the patch size and number of patches depend on the strength of positive and negative feedbacks. Measurements of Ras1 patch size and number in cells overexpressing the Ras1 GEF or Gap1 are consistent with the model.


Assuntos
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Proteínas ras/metabolismo , Actinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Biológicos , Feromônios/metabolismo , Ligação Proteica , Reprodução , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Transdução de Sinais , Processos Estocásticos , Proteína cdc42 de Ligação ao GTP/metabolismo
13.
Semin Cell Dev Biol ; 60: 121-126, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27476112

RESUMO

Cell-cell fusion is a ubiquitous process that underlies fertilization and development of eukaryotes. This process requires fusogenic machineries to promote plasma membrane merging, and also relies on the organization of dedicated sub-cortical cytoskeletal assemblies. This review describes the role of actin structures, so called actin fusion foci, essential for the fusion of two distinct cell types: Drosophila myoblast cells, which fuse to form myotubes, and sexually differentiated cells of the fission yeast Schizosaccharomyces pombe, which fuse to form a zygote. I describe the respective composition and organization of the two structures, discuss their proposed role in promoting plasma membrane apposition, and consider the universality of similar structures for cell-cell fusion.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Fusão Celular , Humanos , Mioblastos/citologia , Mioblastos/metabolismo , Schizosaccharomyces/citologia
14.
PLoS Biol ; 13(4): e1002097, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25837586

RESUMO

The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules.


Assuntos
Actinas/metabolismo , Polaridade Celular , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Schizosaccharomyces/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Alelos , Corantes Fluorescentes , Transporte Proteico , Schizosaccharomyces/citologia , Proteína cdc42 de Ligação ao GTP/genética
15.
Bioessays ; 37(11): 1193-201, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26338468

RESUMO

Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.


Assuntos
Polaridade Celular/fisiologia , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Retroalimentação , Guanosina Trifosfato/química , Modelos Biológicos , Transporte Proteico , Vesículas Transportadoras/metabolismo
16.
J Cell Sci ; 127(Pt 9): 2005-16, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24554432

RESUMO

Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Associadas aos Microtúbulos/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteína cdc42 de Ligação ao GTP/genética
17.
Mol Syst Biol ; 11(7): 818, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26150232

RESUMO

Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod-shaped Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4-phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto-phosphorylation. Here, we demonstrate that Pom1 auto-phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto-phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super-linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration-dependent autocatalysis may be a widely used simple feedback to buffer biological activities.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Algoritmos , Divisão Celular , Membrana Celular/metabolismo , Fosforilação , Proteínas Quinases/química
18.
Nature ; 459(7248): 852-6, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19474792

RESUMO

Cells normally grow to a certain size before they enter mitosis and divide. Entry into mitosis depends on the activity of Cdk1, which is inhibited by the Wee1 kinase and activated by the Cdc25 phosphatase. However, how cells sense their size for mitotic commitment remains unknown. Here we show that an intracellular gradient of the dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) Pom1, which emanates from the ends of rod-shaped Schizosaccharomyces pombe cells, serves to measure cell length and control mitotic entry. Pom1 provides positional information both for polarized growth and to inhibit cell division at cell ends. We discovered that Pom1 is also a dose-dependent G2-M inhibitor. Genetic analyses indicate that Pom1 negatively regulates Cdr1 and Cdr2, two previously described Wee1 inhibitors of the SAD kinase family. This inhibition may be direct, because in vivo and in vitro evidence suggest that Pom1 phosphorylates Cdr2. Whereas Cdr1 and Cdr2 localize to a medial cortical region, Pom1 forms concentration gradients from cell tips that overlap with Cdr1 and Cdr2 in short cells, but not in long cells. Disturbing these Pom1 gradients leads to Cdr2 phosphorylation and imposes a G2 delay. In short cells, Pom1 prevents precocious M-phase entry, suggesting that the higher medial Pom1 levels inhibit Cdr2 and promote a G2 delay. Thus, gradients of Pom1 from cell ends provide a measure of cell length to regulate M-phase entry.


Assuntos
Ciclo Celular/fisiologia , Polaridade Celular , Proteínas Quinases/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fase G2 , Mitose , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/metabolismo , ras-GRF1/metabolismo
19.
FEBS J ; 290(3): 669-676, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797957

RESUMO

Even the simplest cells show a remarkable degree of intracellular patterning. Like developing multicellular organisms, single cells break symmetry to establish polarity axes, pattern their cortex and interior, and undergo morphogenesis to acquire sometimes complex shapes. Symmetry-breaking and molecular patterns can be established through coupling of negative and positive feedback reactions in biochemical reaction-diffusion systems. Physical forces, perhaps best studied in the contraction of the metazoan acto-myosin cortex, which induces cortical and cytoplasmic flows, also serve to pattern-associated components. A less investigated physical perturbation is the in-plane flow of plasma membrane material caused by membrane trafficking. In this review, we discuss how bulk membrane flows can be generated at sites of active polarized secretion and growth, how they affect the distribution of membrane-associated proteins, and how they may be harnessed for patterning and directional movement in cells across the tree of life.


Assuntos
Polaridade Celular , Miosinas , Animais , Membrana Celular/metabolismo , Miosinas/metabolismo , Citoplasma/metabolismo , Proteínas de Membrana
20.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503115

RESUMO

Local Cdc42 GTPase activation promotes polarized exocytosis, resulting in membrane flows that deplete low-mobility membrane-associated proteins from the growth region. To investigate the self-organizing properties of the Cdc42 secretion-polarization system under membrane flow, we developed a reaction-diffusion particle model. The model includes positive feedback activation of Cdc42, hydrolysis by GTPase-activating proteins (GAPs), and flow-induced displacement by exo/endocytosis. Simulations show how polarization relies on flow-induced depletion of low mobility GAPs. To probe the role of Cdc42 mobility in the fission yeast Schizosaccharomyces pombe, we changed its membrane binding properties by replacing its prenylation site with 1, 2 or 3 repeats of the Rit1 C terminal membrane binding domain (ritC), yielding alleles with progressively lower unbinding and diffusion rates. Concordant modelling predictions and experimental observations show that lower Cdc42 mobility results in lower Cdc42 activation level and wider patches. Indeed, while Cdc42-1ritC cells are viable and polarized, Cdc42-2ritC polarize poorly and Cdc42-3ritC is inviable. The model further predicts that GAP depletion increases Cdc42 activity at the expense of loss of polarization. Experiments confirm this prediction, as deletion of Cdc42 GAPs restores viability to Cdc42-3ritC cells. Our combined experimental and modelling studies demonstrate how membrane flows are an integral part of Cdc42-driven pattern formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA