Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7978): 289-294, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704764

RESUMO

Reaction rates at spatially heterogeneous, unstable interfaces are notoriously difficult to quantify, yet are essential in engineering many chemical systems, such as batteries1 and electrocatalysts2. Experimental characterizations of such materials by operando microscopy produce rich image datasets3-6, but data-driven methods to learn physics from these images are still lacking because of the complex coupling of reaction kinetics, surface chemistry and phase separation7. Here we show that heterogeneous reaction kinetics can be learned from in situ scanning transmission X-ray microscopy (STXM) images of carbon-coated lithium iron phosphate (LFP) nanoparticles. Combining a large dataset of STXM images with a thermodynamically consistent electrochemical phase-field model, partial differential equation (PDE)-constrained optimization and uncertainty quantification, we extract the free-energy landscape and reaction kinetics and verify their consistency with theoretical models. We also simultaneously learn the spatial heterogeneity of the reaction rate, which closely matches the carbon-coating thickness profiles obtained through Auger electron microscopy (AEM). Across 180,000 image pixels, the mean discrepancy with the learned model is remarkably small (<7%) and comparable with experimental noise. Our results open the possibility of learning nonequilibrium material properties beyond the reach of traditional experimental methods and offer a new non-destructive technique for characterizing and optimizing heterogeneous reactive surfaces.

2.
Chem Rev ; 123(6): 2737-2831, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36898130

RESUMO

Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.

3.
Nano Lett ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437028

RESUMO

Nanopore-based sensing platforms have transformed single-molecule detection and analysis. The foundation of nanopore translocation experiments lies in conductance measurements, yet existing models, which are largely phenomenological, are inaccurate in critical experimental conditions such as thin and tightly fitting pores. Of the two components of the conductance blockade, channel and access resistance, the access resistance is poorly modeled. We present a comprehensive investigation of the access resistance and associated conductance blockade in thin nanopore membranes. By combining a first-principles approach, multiscale modeling, and experimental validation, we propose a unified theoretical modeling framework. The analytical model derived as a result surpasses current approaches across a broad parameter range. Beyond advancing our theoretical understanding, our framework's versatility enables analyte size inference and predictive insights into conductance blockade behavior. Our results will facilitate the design and optimization of nanopore devices for diverse applications, including nanopore base calling and data storage.

4.
Chem Rev ; 122(16): 13547-13635, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35904408

RESUMO

Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrodos , Poluição Ambiental , Águas Residuárias , Água , Purificação da Água/métodos
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33858987

RESUMO

The current revival of the American economy is being predicated on social distancing, specifically the Six-Foot Rule, a guideline that offers little protection from pathogen-bearing aerosol droplets sufficiently small to be continuously mixed through an indoor space. The importance of airborne transmission of COVID-19 is now widely recognized. While tools for risk assessment have recently been developed, no safety guideline has been proposed to protect against it. We here build on models of airborne disease transmission in order to derive an indoor safety guideline that would impose an upper bound on the "cumulative exposure time," the product of the number of occupants and their time in an enclosed space. We demonstrate how this bound depends on the rates of ventilation and air filtration, dimensions of the room, breathing rate, respiratory activity and face mask use of its occupants, and infectiousness of the respiratory aerosols. By synthesizing available data from the best-characterized indoor spreading events with respiratory drop size distributions, we estimate an infectious dose on the order of 10 aerosol-borne virions. The new virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is thus inferred to be an order of magnitude more infectious than its forerunner (SARS-CoV), consistent with the pandemic status achieved by COVID-19. Case studies are presented for classrooms and nursing homes, and a spreadsheet and online app are provided to facilitate use of our guideline. Implications for contact tracing and quarantining are considered, and appropriate caveats enumerated. Particular consideration is given to respiratory jets, which may substantially elevate risk when face masks are not worn.


Assuntos
Microbiologia do Ar , COVID-19/prevenção & controle , Guias como Assunto , SARS-CoV-2 , Aerossóis , Poluição do Ar em Ambientes Fechados , COVID-19/transmissão , Humanos , Modelos Teóricos , Segurança
6.
Nano Lett ; 23(12): 5548-5554, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37285463

RESUMO

Water and other polar liquids exhibit nanoscale structuring near charged interfaces. When a polar liquid is confined between two charged surfaces, the interfacial solvent layers begin to overlap, resulting in solvation forces. Here, we perform molecular dynamics simulations of polar liquids with different dielectric constants and molecular shapes and sizes confined between charged surfaces, demonstrating strong orientational ordering in the nanoconfined liquids. To rationalize the observed structures, we apply a coarse-grained continuum theory that captures the orientational ordering and solvation forces of those liquids. Our findings reveal the subtle behavior of different nanoconfined polar liquids and establish a simple law for the decay length of the interfacial orientations of the solvents, which depends on their molecular size and polarity. These insights shed light on the nature of solvation forces, which are important in colloid and membrane science, scanning probe microscopy, and nano-electrochemistry.

7.
Nat Mater ; 21(5): 547-554, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35177785

RESUMO

Constitutive laws underlie most physical processes in nature. However, learning such equations in heterogeneous solids (for example, due to phase separation) is challenging. One such relationship is between composition and eigenstrain, which governs the chemo-mechanical expansion in solids. Here we developed a generalizable, physically constrained image-learning framework to algorithmically learn the chemo-mechanical constitutive law at the nanoscale from correlative four-dimensional scanning transmission electron microscopy and X-ray spectro-ptychography images. We demonstrated this approach on LiXFePO4, a technologically relevant battery positive electrode material. We uncovered the functional form of the composition-eigenstrain relation in this two-phase binary solid across the entire composition range (0 ≤ X ≤ 1), including inside the thermodynamically unstable miscibility gap. The learned relation directly validates Vegard's law of linear response at the nanoscale. Our physics-constrained data-driven approach directly visualizes the residual strain field (by removing the compositional and coherency strain), which is otherwise impossible to quantify. Heterogeneities in the residual strain arise from misfit dislocations and were independently verified by X-ray diffraction line profile analysis. Our work provides the means to simultaneously quantify chemical expansion, coherency strain and dislocations in battery electrodes, which has implications on rate capabilities and lifetime. Broadly, this work also highlights the potential of integrating correlative microscopy and image learning for extracting material properties and physics.

8.
Faraday Discuss ; 246(0): 60-124, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37676178

RESUMO

A general theory of coupled ion-electron transfer (CIET) is presented, which unifies Marcus kinetics of electron transfer (ET) with Butler-Volmer kinetics of ion transfer (IT). In the limit of large reorganization energy, the theory predicts normal Marcus kinetics of "electron-coupled ion transfer" (ECIT). In the limit of large ion transfer energies, the theory predicts Butler-Volmer kinetics of "ion-coupled electron transfer" (ICET), where the charge transfer coefficient and exchange current are connected to microscopic properties of the electrode/electrolyte interface. In the ICET regime, the reductive and oxidative branches of Tafel's law are predicted to hold over a wide range of overpotentials, bounded by the ion-transfer energies for oxidation and reduction, respectively. The probability distribution of transferring electron energies in CIET smoothly interpolates between a shifted Gaussian distribution for ECIT (as in the Gerischer-Marcus theory of ET) to an asymmetric, fat-tailed Meixner distribution centered at the Fermi level for ICET. The latter may help interpret asymmetric line shapes in x-ray photo-electron spectroscopy (XPS) and Auger electron spectroscopy (AES) for metal surfaces in terms of shake-up relaxation of the ionized atom and its image polaron by ICET. In the limit of large overpotentials, the theory predicts a transition to inverted Marcus ECIT, leading to a universal reaction-limited current for metal electrodes, dominated by barrierless quantum transitions. Uniformly valid, closed-form asymptotic approximations are derived that smoothly transition between the limiting rate expressions for ICET and ECIT for metal electrodes, using simple but accurate mathematical functions. The theory is applied to lithium intercalation in lithium iron phosphate (LFP) and found to provide a consistent description of the observed current dependence on overpotential, temperature and concentration. CIET theory thus provides a critical bridge between quantum electrochemistry and electrochemical engineering, which may find many other applications and extensions.

9.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37352420

RESUMO

Understanding the charge transfer processes at solid oxide fuel cell (SOFC) electrodes is critical to designing more efficient and robust materials. Activation losses at SOFC electrodes have been widely attributed to the ambipolar migration of charges at the mixed ionic-electronic conductor-gas interface. Empirical Butler-Volmer kinetics based on the transition state theory is often used to model the current-voltage relationship, where charged particles transfer classically over an energy barrier. However, the hydrogen oxidation/water electrolysis reaction H2(g) + O2- ⇌ H2O(g) + 2e- must be modeled through concerted electron and proton tunneling events, where we unify the theory of the electrostatic surface potential with proton-coupled electron transfer kinetics. We derive a framework for the reaction rate that depends on the electrostatic surface potential, adsorbate dipole moment, the electronic structure of the electron donor/acceptor, and vibronic states of the hydrogen species. This theory was used to study the current-voltage characteristics of the Ni/gadolinium-doped ceria electrode in H2/H2O(g), where we find excellent validation of this novel model. These results yield the first reported quantification of the solvent reorganization energy for an SOFC material and suggest that the three-phase boundary mechanism is the dominant pathway for charge transfer at cermet electrodes.


Assuntos
Óxidos , Prótons , Óxidos/química , Elétrons , Hidrogênio/química , Eletrodos
10.
Chem Soc Rev ; 51(11): 4583-4762, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35575644

RESUMO

Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.


Assuntos
Desenvolvimento Industrial , Água , Eletricidade , Eletrólise , Humanos , Hidrogênio
11.
Nano Lett ; 22(14): 5866-5873, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35815943

RESUMO

Nonvolatile resistive-switching (RS) memories promise to revolutionize hardware architectures with in-memory computing. Recently, ion-interclation materials have attracted increasing attention as potential RS materials for their ion-modulated electronic conductivity. In this Letter, we propose RS by multiphase polarization (MP) of ion-intercalated thin films between ion-blocking electrodes, in which interfacial phase separation triggered by an applied voltage switches the electron-transfer resistance. We develop an electrochemical phase-field model for simulations of coupled ion-electron transport and ion-modulated electron-transfer rates and use it to analyze the MP switching current and time, resistance ratio, and current-voltage response. The model is able to reproduce the complex cyclic voltammograms of lithium titanate (LTO) memristors, which cannot be explained by existing models based on bulk dielectric breakdown. The theory predicts the achievable switching speeds for multiphase ion-intercalation materials and could be used to guide the design of high-performance MP-based RS memories.

12.
J Am Chem Soc ; 144(26): 11693-11705, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729706

RESUMO

Nanopores lined with hydrophobic groups function as switches for water and all dissolved species, such that transport is allowed only when applying a sufficiently high transmembrane pressure difference or voltage. Here we show a hydrophobic nanopore system whose wetting and ability to transport water and ions is rectified and can be controlled with salt concentration. The nanopore we study contains a junction between a hydrophobic zone and a positively charged hydrophilic zone. The nanopore is closed for transport at low salt concentrations and exhibits finite current only when the concentration reaches a threshold value that is dependent on the pore opening diameter, voltage polarity and magnitude, and type of electrolyte. The smallest nanopore studied here had a 4 nm diameter and did not open for transport in any concentration of KCl or KI examined. A 12 nm nanopore was closed for all KCl solutions but conducted current in KI at concentrations above 100 mM for negative voltages and opened for both voltage polarities at 500 mM KI. Nanopores with a hydrophobic/hydrophilic junction can thus function as diodes, such that one can identify a range of salt concentrations where the pores transport water and ions for only one voltage polarity. Molecular dynamics simulations together with continuum models provided a multiscale explanation of the observed phenomena and linked the salt concentration dependence of wetting with an electrowetting model. Results presented are crucial for designing next-generation chemical and ionic separation devices as well as understanding fundamental properties of hydrophobic interfaces under nanoconfinement.


Assuntos
Nanoporos , Interações Hidrofóbicas e Hidrofílicas , Íons , Cloreto de Sódio , Água/química , Molhabilidade
13.
Nat Mater ; 20(7): 991-999, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33686277

RESUMO

Layered oxides widely used as lithium-ion battery electrodes are designed to be cycled under conditions that avoid phase transitions. Although the desired single-phase composition ranges are well established near equilibrium, operando diffraction studies on many-particle porous electrodes have suggested phase separation during delithiation. Notably, the separation is not always observed, and never during lithiation. These anomalies have been attributed to irreversible processes during the first delithiation or reversible concentration-dependent diffusion. However, these explanations are not consistent with all experimental observations such as rate and path dependencies and particle-by-particle lithium concentration changes. Here, we show that the apparent phase separation is a dynamical artefact occurring in a many-particle system driven by autocatalytic electrochemical reactions, that is, an interfacial exchange current that increases with the extent of delithiation. We experimentally validate this population-dynamics model using the single-phase material Lix(Ni1/3Mn1/3Co1/3)O2 (0.5 < x < 1) and demonstrate generality with other transition-metal compositions. Operando diffraction and nanoscale oxidation-state mapping unambiguously prove that this fictitious phase separation is a repeatable non-equilibrium effect. We quantitatively confirm the theory with multiple-datastream-driven model extraction. More generally, our study experimentally demonstrates the control of ensemble stability by electro-autocatalysis, highlighting the importance of population dynamics in battery electrodes (even non-phase-separating ones).

14.
Environ Sci Technol ; 56(19): 14091-14098, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36150156

RESUMO

Electrochemical methods are known to have attractive features and capabilities when used for ion separations and water purification. In this study, we developed a new process called shock ion extraction (shock IX) for selective and chemical-free removal of toxic heavy metals from water. Shock IX is a hybrid process that combines shock electrodialysis (shock ED) and ion exchange using an ion exchange resin wafer (IERW), and this method can be thought of functionally as an electrochemically assisted variation of traditional ion exchange. In particular, shock IX exhibits greater ion removal and selectivity for longer periods of time, compared to the use of ion exchange alone. The use of an IERW in shock ED also increases multivalent ion selectivity, reduces energy consumption, and improves the hydrodynamics and scalability of the system.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Cátions , Troca Iônica , Resinas de Troca Iônica , Água , Purificação da Água/métodos
15.
J Chem Phys ; 156(24): 244705, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778078

RESUMO

The structure of polar liquids and electrolytic solutions, such as water and aqueous electrolytes, at interfaces underlies numerous phenomena in physics, chemistry, biology, and engineering. In this work, we develop a continuum theory that captures the essential features of dielectric screening by polar liquids at charged interfaces, including decaying spatial oscillations in charge and mass, starting from the molecular properties of the solvent. The theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously studied in molecular dynamics simulations. We explore the effect of the interfacial polar liquid properties on the capacitance of the electrode/electrolyte interface and on hydration forces between two plane-parallel polarized surfaces. In the linear response approximation, we obtain simple formulas for the characteristic decay lengths of molecular and ionic profiles at the interface.


Assuntos
Eletrólitos , Água , Eletrólitos/química , Íons/química , Simulação de Dinâmica Molecular , Solventes , Água/química
16.
J Chem Phys ; 157(9): 094106, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075727

RESUMO

Understanding the bulk and interfacial properties of super-concentrated electrolytes, such as ionic liquids (ILs), has attracted significant attention lately for their promising applications in supercapacitors and batteries. Recently, McEldrew et al. [J. Phys. Chem. B 125, 2677 (2021)] developed a theory for reversible ion associations in bulk ILs, which accounted for the formation of all possible (Cayley tree) clusters and a percolating ionic network (gel). Here, we adopt and develop this approach to understand the associations of ILs in the electrical double layer at electrified interfaces. With increasing charge of the electrode, the theory predicts a transition from a regime dominated by a gelled or clustered state to a crowding regime dominated by free ions. This transition from gelation to crowding is conceptually similar to the overscreening to crowding transition.

17.
Proc Natl Acad Sci U S A ; 116(22): 10652-10657, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31072922

RESUMO

Capillary effects, such as imbibition drying cycles, impact the mechanics of granular systems over time. A multiscale poromechanics framework was applied to cement paste, which is the most common building material, experiencing broad humidity variations over the lifetime of infrastructure. First, the liquid density distribution at intermediate to high relative humidity is obtained using a lattice gas density functional method together with a realistic nanogranular model of cement hydrates. The calculated adsorption/desorption isotherms and pore size distributions are discussed and compare well with nitrogen and water experiments. The standard method for pore size distribution determination from desorption data is evaluated. Second, the integration of the Korteweg liquid stress field around each cement hydrate particle provided the capillary forces at the nanoscale. The cement mesoscale structure was relaxed under the action of the capillary forces. Local irreversible deformations of the cement nanograins assembly were identified due to liquid-solid interactions. The spatial correlations of the nonaffine displacements extend to a few tens of nanometers. Third, the Love-Weber method provided the homogenized liquid stress at the micrometer scale. The homogenization length coincided with the spatial correlation length of nonaffine displacements. Our results on the solid response to capillary stress field suggest that the micrometer-scale texture is not affected by mild drying, while nanoscale irreversible deformations still occur. These results pave the way for understanding capillary phenomena-induced stresses in heterogeneous porous media ranging from construction materials to hydrogels and living systems.

18.
J Radiol Prot ; 42(4)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130583

RESUMO

Individual monitoring of radiation workers is essential to ensure compliance with legal dose limits and to ensure that doses are As Low As Reasonably Achievable. However, large uncertainties still exist in personal dosimetry and there are issues with compliance and incorrect wearing of dosimeters. The objective of the PODIUM (Personal Online Dosimetry Using Computational Methods) project was to improve personal dosimetry by an innovative approach: the development of an online dosimetry application based on computer simulations without the use of physical dosimeters. Occupational doses were calculated based on the use of camera tracking devices, flexible individualised phantoms and data from the radiation source. When combined with fast Monte Carlo simulation codes, the aim was to perform personal dosimetry in real-time. A key component of the PODIUM project was to assess and validate the methodology in interventional radiology workplaces where improvements in dosimetry are needed. This paper describes the feasibility of implementing the PODIUM approach in a clinical setting. Validation was carried out using dosimeters worn by Vascular Surgeons and Interventional Cardiologists during patient procedures at a hospital in Ireland. Our preliminary results from this feasibility study show acceptable differences of the order of 40% between calculated and measured staff doses, in terms of the personal dose equivalent quantity Hp(10), however there is a greater deviation for more complex cases and improvements are needed. The challenges of using the system in busy interventional rooms have informed the future needs and applicability of PODIUM. The availability of an online personal dosimetry application has the potential to overcome problems that arise from the use of current dosimeters. In addition, it should increase awareness of radiation protection among staff. Some limitations remain and a second phase of development would be required to bring the PODIUM method into operation in a hospital setting. However, an early prototype system has been tested in a clinical setting and the results from this two-year proof-of-concept PODIUM project are very promising for future development.


Assuntos
Cardiologia , Exposição Ocupacional , Estudos de Viabilidade , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Radiologia Intervencionista , Radiometria/métodos
19.
Soft Matter ; 17(5): 1202-1209, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33427833

RESUMO

The displacement of a fluid by another less viscous one in a quasi-two dimensional geometry typically leads to complex fingering patterns. In an isotropic system, dense-branching growth arises, which is characterized by repeated tip-splitting of evolving fingers. When anisotropy is present in the interfacial dynamics, the growth morphology changes to dendritic growth characterized by regular structures. We introduce anisotropy by engraving a six-fold symmetric lattice of channels on a Hele-Shaw cell. We show that the morphology transition in miscible fluids depends not only on the previously reported degree of anisotropy set by the lattice topography, but also on the viscosity ratio between the two fluids, ηin/ηout. Remarkably, ηin/ηout and the degree of anisotropy also govern the global features of the dendritic patterns, inducing a systematic change from six-fold towards twelve-fold symmetric dendrites. Varying either control parameter provides a new method to tune the symmetry of complex patterns, which may also have relevance for analogous phenomena of gradient-driven interfacial dynamics, such as directional solidification or electrodeposition.

20.
Soft Matter ; 17(41): 9480-9498, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34617080

RESUMO

A variety of polymeric surfaces, such as anti-corrosion coatings and polymer-modified asphalts, are prone to blistering when exposed to moisture and air. As water and oxygen diffuse through the material, dissolved species are produced, which generate osmotic pressure that deforms and debonds the coating. These mechanisms are experimentally well-supported; however, comprehensive macroscopic models capable of predicting the formation osmotic blisters, without extensive data-fitting, is scant. Here, we develop a general mathematical theory of blistering and apply it to the failure of anti-corrosion coatings on carbon steel. The model is able to predict the irreversible, nonlinear blister growth dynamics, which eventually reaches a stable state, ruptures, or undergoes runaway delamination, depending on the mechanical and adhesion properties of the coating. For runaway delamination, the theory predicts a critical delamination length, beyond which unstable corrosion-driven growth occurs. The model is able to fit multiple sets of blister growth data with no fitting parameters. Corrosion experiments are also performed to observe undercoat rusting on carbon steel, which yielded trends comparable with model predictions. The theory is used to define three dimensionless numbers which can be used for engineering design of elastic coatings capable of resisting visible deformation, rupture, and delamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA