Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Phycol ; 55(1): 186-195, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30329158

RESUMO

Several coastal countries including France have experienced serious and increasing problems related to Pseudo-nitzschia toxic blooms. These toxic blooms occur in estuarine and coastal waters potentially subject to fluctuations in salinity. In this study, we document for the first time the viability, growth, photosynthetic efficiency, and toxin production of two strains of Pseudo-nitzschia australis grown under conditions with sudden salinity changes. Following salinity variation, the two strains survived over a restricted salinity range of 30-35, with favorable physiological responses, as the growth, effective quantum yield and toxin content were high compared to the other conditions. In addition, high cellular quotas of domoic acid (DA) were observed at a salinity of 40 for the strain IFR-PAU-16.1 in comparison with the other strain IFR-PAU-16.2 where the cell DA content was directly released into the medium. On the other hand, the osmotic stress imposed at lower salinities, 20 and 10, resulted in cell lysis and a sudden DA leakage in the medium. Intra-specific variability was observed in growth and toxin production, with the strain IFR-PAU-16.1 apparently able to withstand higher salinities than the strain IFR-PAU-16.2. On the whole, DA does not appear to act as an osmolyte in response to sudden salinity changes. Since most of the shellfish harvesting areas of bivalve molluscs in France are located in areas where the salinity generally varies between 30 and 35, Pseudo-nitzschia australis blooms might potentially impact public health and commercial shellfish resources in these places.


Assuntos
Diatomáceas , Salinidade , França , Ácido Caínico/análogos & derivados
2.
Mar Drugs ; 13(12): 7067-86, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703627

RESUMO

Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.


Assuntos
Diatomáceas/metabolismo , Ácido Caínico/análogos & derivados , Toxinas Marinhas/metabolismo , Nitrogênio/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Técnicas de Cultura , Europa (Continente) , Ácido Caínico/metabolismo , Nitrogênio/química , Especificidade da Espécie
3.
Nature ; 456(7219): 239-44, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18923393

RESUMO

Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes ( approximately 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.


Assuntos
Diatomáceas/genética , Evolução Molecular , Genoma/genética , DNA de Algas/análise , Genes Bacterianos/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
4.
Chembiochem ; 10(12): 2011-24, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19623594

RESUMO

Among diatoms, Phaeodactylum tricornutum is a peculiar species that exists in three morphotypes with distinct cell wall structures and low silica content. X-ray photoelectron spectroscopy (XPS) analysis was performed on P. tricornutum and compared with diatom Thalassiosira pseudonana; the results provide new information on the chemical composition (elements, chemical functions, classes of biochemical compounds) of the cell surface. Two types of silicon were found: condensed silica (SiO(2)) and weakly polymerised silicate. Cells of T. pseudonana showed the highest concentration of silicon, with a majority in the form of condensed silica. For the fusiform and triradiate morphotypes of P. tricornutum, the majority of the small concentration of silica found was in the form of weakly polymerised silicate. For all morphotypes of P. tricornutum, higher polysaccharide concentrations replaced silica as a structural part of the cell wall. In both diatoms, a high concentration of lipids was measured, in the form of carboxylic esters. Protonated nitrogen and phosphate were found in correlated amounts and attributed not only to phospholipids but also to phosphoproteins. Chloride ions characterised by a high electron density might be associated to these moieties. Sulfate groups were also detected, principally in P. tricornutum, and attributed to monoesters of polysaccharides.


Assuntos
Diatomáceas/química , Cloretos/química , Diatomáceas/citologia , Lipídeos/química , Nitrogênio/química , Fosfatos/química , Fosfoproteínas/química , Silicatos/química , Silício/química , Dióxido de Silício/química , Espectrofotometria , Sulfatos/química , Propriedades de Superfície , Raios X
5.
Environ Microbiol ; 10(5): 1344-56, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18248452

RESUMO

The ultrastructure and mechanical properties of the fusiform, triradiate and ovoid morphotypes of Phaeodactylum tricornutum were investigated using atomic force microscopy. Using topographic imaging, we showed that the surface of the ovoid form is rougher than those of the two other specimens, and coated with an outer layer of extracellular polymers. Using spatially resolved force-indentation curves, we found that the valve of the ovoid form is about five times stiffer (Young modulus of approximately 500 kPa) than those of the other forms (approximately 100 kPa), a finding fully consistent with the fact that only the ovoid form has a silica valve, whereas the valves in the other two consist mostly of organic material. Notably, the girdle region of both fusiform and ovoid forms was five times softer than the valve, suggesting that this region is poor in silica and enriched in organic material. For the triradiate form, we showed the arms to be softer than the core region, presumably as a result of organelle localization. Last, we observed mucilaginous footprints of moderate stiffness (approximately 100 kPa) in the vicinity of ovoid diatoms, which we believe are secreted extracellular polymers.


Assuntos
Diatomáceas/fisiologia , Diatomáceas/ultraestrutura , Fenômenos Biomecânicos , Diatomáceas/metabolismo , Elasticidade , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Nanotecnologia , Propriedades de Superfície
6.
Anal Bioanal Chem ; 390(7): 1889-98, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18278484

RESUMO

A major issue in the study of biosilicification processes is the harsh chemical conditions required for silica dissolution, which often lead to denaturation of the associated bio-organic matter. In order to demonstrate the potential of solid state NMR for investigating silicified materials of natural origin, this technique was applied to isotopically enriched Thalassiosira pseudonana diatom cells. (29)Si, (1)H,(31)P, (13)C and (15)N solid state NMR studies were performed on whole cells, SDS-extracted and H(2)O(2)-cleaned silica shells. Cross-polarization techniques were useful for identifying the presence of mobile and rigid molecules, allowing loosely bound and silica-entrapped species to be discriminated. Successive cleaning procedures efficiently eliminated weakly associated organic matter. The H(2)O(2)-cleaned silica shell still contained carbohydrates (mainly chitin) and proteins as well as lipids. This suggests that the role of lipids in diatom shell formation may have been underestimated so far, demonstrating the potential of solid state NMR for studying composite biomaterials.


Assuntos
Parede Celular/química , Diatomáceas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Dióxido de Silício/química
7.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28717022

RESUMO

In this study, we investigated the responses of Phaeodactylum tricornutum cells acclimated to 300 µmol m-2 s-1 photon flux density to an increase (1000 µmol m-2 s-1) or decrease (30 µmol m-2 s-1) in photon flux densities. The light shift occurred abruptly after 5 days of growth and the acclimation to new conditions was followed during the next 6 days at the physiological and molecular levels. The molecular data reflect a rearrangement of carbon metabolism towards the production of phosphoenolpyruvic acid (PEP) and/or pyruvate. These intermediates were used differently by the cell as a function of the photon flux density: under low light, photosynthesis was depressed while respiration was increased. Under high light, lipids and proteins accumulated. Of great interest, under high light, the genes coding for the synthesis of aromatic amino acids and phenolic compounds were upregulated suggesting that the shikimate pathway was activated.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Assuntos
Dióxido de Carbono/metabolismo , Diatomáceas/metabolismo , Luz , Fotossíntese , Carbono/metabolismo , Diatomáceas/efeitos da radiação
8.
Genome Biol ; 11(8): R85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20738856

RESUMO

BACKGROUND: Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes. RESULTS: We have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity. CONCLUSIONS: The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance.


Assuntos
Adaptação Fisiológica/genética , Diatomáceas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , RNA Mensageiro/análise , Dióxido de Carbono/metabolismo , Meio Ambiente , Etiquetas de Sequências Expressas , Ferro/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Salinidade , Silicatos/metabolismo , Temperatura
10.
PLoS One ; 3(1): e1426, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18183306

RESUMO

BACKGROUND: Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. METHODOLOGY/PRINCIPAL FINDINGS: The whole genome sequence of the diatom Phaeodactylum tricornutum has recently been completed. We identified and annotated genes for enzymes involved in carbohydrate pathways based on extensive EST support and comparison to the whole genome sequence of a second diatom, Thalassiosira pseudonana. Protein localization to mitochondria was predicted based on identified similarities to mitochondrial localization motifs in other eukaryotes, whereas protein localization to plastids was based on the presence of signal peptide motifs in combination with plastid localization motifs previously shown to be required in diatoms. We identified genes potentially involved in a C4-like photosynthesis in P. tricornutum and, on the basis of sequence-based putative localization of relevant proteins, discuss possible differences in carbon concentrating mechanisms and CO(2) fixation between the two diatoms. We also identified genes encoding enzymes involved in photorespiration with one interesting exception: glycerate kinase was not found in either P. tricornutum or T. pseudonana. Various Calvin cycle enzymes were found in up to five different isoforms, distributed between plastids, mitochondria and the cytosol. Diatoms store energy either as lipids or as chrysolaminaran (a beta-1,3-glucan) outside of the plastids. We identified various beta-glucanases and large membrane-bound glucan synthases. Interestingly most of the glucanases appear to contain C-terminal anchor domains that may attach the enzymes to membranes. CONCLUSIONS/SIGNIFICANCE: Here we present a detailed synthesis of carbohydrate metabolism in diatoms based on the genome sequences of Thalassiosira pseudonana and Phaeodactylum tricornutum. This model provides novel insights into acquisition of dissolved inorganic carbon and primary metabolic pathways of carbon in two different diatoms, which is of significance for an improved understanding of global carbon cycles.


Assuntos
Metabolismo dos Carboidratos , Diatomáceas/metabolismo , Genoma , Modelos Biológicos , Dióxido de Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA