Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34957674

RESUMO

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Biomassa , Eutrofização , Nitrogênio , Nutrientes
2.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36278303

RESUMO

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Assuntos
Ecossistema , Pradaria , Biomassa , Biodiversidade , Plantas
3.
Ecol Appl ; 31(2): e02233, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33048393

RESUMO

Coastal wetlands intercept significant amounts of nitrogen (N) from watersheds, especially when surrounding land cover is dominated by agriculture and urban development. Through plant uptake, soil immobilization, and denitrification, wetlands can remove excess N from flow-through water sources and mitigate eutrophication of connected aquatic ecosystems. Excess N can also change plant community composition in wetlands, including communities threatened by invasive species. Understanding how variable hydrology and N loading impact wetland N removal and community composition can help attain desired management outcomes, including optimizing N removal and/or preventing invasion by nonnatives. By using a dynamic, process-based ecosystem simulation model, we are able to simulate various levels of hydrology and N loading that would otherwise be difficult to manipulate. We investigate in silico the effects of hydroperiod, hydrologic residence time, N loading, and the NH4+ : NO3- ratio on both N removal and the invasion success of two nonnative species (Typha × glauca or Phragmites australis) in temperate freshwater coastal wetlands. We found that, when residence time increased, annual N removal increased up to 10-fold while longer hydroperiods also increased N removal, but only when residence time was >10 d and N loading was >30 g N·m-2 ·yr-1 . N removal efficiency also increased with increasing residence time and hydroperiod, but was less affected by N loading. However, longer hydrologic residence time increased vulnerability of wetlands to invasion by both invasive plants at low to medium N loading rates where native communities are typically more resistant to invasion. This suggests a potential trade-off between ecosystem services related to nitrogen removal and wetland invasibility. These results help elucidate complex interactions of community composition, N loading and hydrology on N removal, helping managers to prioritize N removal when N loading is high or controlling plant invasion in more vulnerable wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Água Doce , Hidrologia , Nitrogênio/análise
4.
Zoo Biol ; 37(2): 80-89, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29527718

RESUMO

Maternal deprivation can cause long-term behavioral changes in captive mammals. Studies regarding captive ungulates have also indicated behavioral shifts in the presence of the animal keeping staff; however, little is known about these effects in captive giraffes (Giraffa camelopardalis). To examine this, we observed a population of reticulated giraffes composed of maternally raised and maternally deprived individuals by direct and camera observations at Binder Park Zoo, Battle Creek, Michigan. We conducted observations using a unique ethogram with special regard for behaviors that might indicate stress or anti-social tendencies. Several variables can interact to create behavioral changes; to account for this, our study design examined the interactive effects of observation technique, raising style, and temperature on giraffe behavior. The results of these observations showed a significant increase in the rate of stereotypic and antisocial behaviors resulting from the interaction of observation technique and raising style. Stereotypic behaviors in particular showed a marked increased during cooler temperatures among giraffes of all raising style. Likewise, raising style, observation technique, and their interaction significantly impacted the time spent rubbing the enclosure. The findings of this study suggest that captive giraffe behavior can be a complex response to multiple factors and studies only examining single factors might oversimplify behavioral shifts.


Assuntos
Animais de Zoológico , Comportamento Animal , Girafas/fisiologia , Privação Materna , Estresse Fisiológico , Criação de Animais Domésticos , Bem-Estar do Animal , Animais , Feminino , Masculino , Comportamento Social
5.
Am Nat ; 190(2): 229-243, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28731795

RESUMO

Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.


Assuntos
Nitrogênio , Desenvolvimento Vegetal , Ecossistema , Folhas de Planta , Raízes de Plantas , Plantas
6.
Anim Reprod Sci ; 248: 107182, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529013

RESUMO

Maintaining reproductive seasonality can be vital to the fitness of wild animals. Certain species, however, may display aseasonal reproduction and may produce multiple yearly litters when maintained in captivity. Wild fennec foxes (Vulpes zerda), for example, produce a single litter in March or April although their reproductive behaviors are reportedly variable in captivity. Here, we used the fennec fox studbook to extract traits related to reproductive variability in 220 captive-born litters. The captive litters in our dataset were born during every month of the year and nearly half (47%) were born outside of the expected months. The production of multiple litters in a single year was common, where 67% of the litters represented a second annual litter for a given dam. We detected several traits related to multi-litter years, including the dam's ability to habituate to the birth location, the dam's age, the dam's number of previous litters, and the dam's birth month. Although producing multiple litters within a year has been anecdotally associated with the loss of a previous litter, we did not detect a relationship between multi-litter years and the survivorship of previous litters. These findings suggest that captive populations of fennec foxes may experience a destabilization of their reproductive patterns, which may culminate in the production of multiple litters outside of the typical window of reproduction. Fennec foxes are a common captive species bred in zoos worldwide. Developing a greater understanding of their reproduction can allow for more successful captive management, which may improve future reproductive successes.


Assuntos
Raposas , Reprodução , Gravidez , Feminino , Animais , Animais Selvagens , Parto , Tamanho da Ninhada de Vivíparos
7.
Nat Commun ; 14(1): 6375, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821444

RESUMO

Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change.


Assuntos
Biodiversidade , Pradaria , Biomassa , Eutrofização , Estações do Ano , Ecossistema
8.
Nat Commun ; 14(1): 6624, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857640

RESUMO

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Assuntos
Ecossistema , Solo , Carbono , Biodiversidade , Biomassa , Plantas , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA