RESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron (MN) disease characterized by protein misfolding and aggregation leading to cellular degeneration. So far neither biomarker, nor effective treatment has been found. ATP signaling and P2X4 receptors (P2X4) are upregulated in various neurodegenerative diseases. Here we show that several ALS-related misfolded proteins including mutants of SOD1 or TDP-43 lead to a significant increase in surface P2X4 receptor density and function in vitro. In addition, we demonstrate in the spinal the cord of SOD1-G93A (SOD1) mice that misfolded SOD1-G93A proteins directly interact with endocytic adaptor protein-2 (AP2); thus, acting as negative competitors for the interaction between AP2 and P2X4, impairing constitutive P2X4 endocytosis. The higher P2X4 surface density was particularly observed in peripheral macrophages of SOD1 mice before the onset and during the progression of ALS symptoms positioning P2X4 as a potential early biomarker for ALS. P2X4 expression was also upregulated in spinal microglia of SOD1 mice during ALS and affect microglial inflammatory responses. Importantly, we report using double transgenic SOD1 mice expressing internalization-defective P2X4mCherryIN knock-in gene or invalidated for the P2X4 gene that P2X4 is instrumental for motor symptoms, ALS progression and survival. This study highlights the role of P2X4 in the pathophysiology of ALS and thus its potential for the development of biomarkers and treatments. We also decipher the molecular mechanism by which misfolded proteins related to ALS impact P2X4 trafficking at early pathological stage in cells expressing-P2X4.
Assuntos
Esclerose Lateral Amiotrófica , Doença dos Neurônios Motores , Receptores Purinérgicos P2X4 , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismoRESUMO
ATP signaling and surface P2X4 receptors are upregulated selectively in neurons and/or glia in various CNS disorders including anxiety, chronic pain, epilepsy, ischemia, and neurodegenerative diseases. However, the cell-specific functions of P2X4 in pathological contexts remain elusive. To elucidate P2X4 functions, we created a conditional transgenic knock-in P2X4 mouse line (Floxed P2X4mCherryIN) allowing the Cre activity-dependent genetic swapping of the internalization motif of P2X4 by the fluorescent mCherry protein to prevent constitutive endocytosis of P2X4. By combining molecular, cellular, electrophysiological, and behavioral approaches, we characterized two distinct knock-in mouse lines expressing noninternalized P2X4mCherryIN either exclusively in excitatory forebrain neurons or in all cells natively expressing P2X4. The genetic substitution of wild-type P2X4 by noninternalized P2X4mCherryIN in both knock-in mouse models did not alter the sparse distribution and subcellular localization of P2X4 but increased the number of P2X4 receptors at the surface of the targeted cells mimicking the pathological increased surface P2X4 state. Increased surface P2X4 density in the hippocampus of knock-in mice altered LTP and LTD plasticity phenomena at CA1 synapses without affecting basal excitatory transmission. Moreover, these cellular events translated into anxiolytic effects and deficits in spatial memory. Our results show that increased surface density of neuronal P2X4 contributes to synaptic deficits and alterations in anxiety and memory functions consistent with the implication of P2X4 in neuropsychiatric and neurodegenerative disorders. Furthermore, these conditional P2X4mCherryIN knock-in mice will allow exploring the cell-specific roles of P2X4 in various physiological and pathological contexts.
Assuntos
Ansiedade , Memória , Receptores Purinérgicos P2X4 , Sinapses , Animais , Ansiedade/genética , Técnicas de Introdução de Genes , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios , Receptores Purinérgicos P2X4/genéticaRESUMO
Developing baseline concentrations of serotonin in healthy white-tailed deer will allow for the development of a biomarker using non-invasive sample tissues in sick animals, for example, non-clinical cases of chronic wasting disease. It will also allow some further insight into whether the use of antibiotics as growth promoters (AGP), such as chlortetracycline, is affecting serotonin concentrations in white-tailed deer. Florfenicol and tulathromycin impacts on serotonin concentration changes were also investigated. An analytical method for the detection and confirmation of serotonin, 5-hydroxytryptamine (5-HT), in white-tailed deer tissues was developed and validated. Serum and urine samples were extracted with acetonitrile. Liquid chromatography separation was attained on a Phenomenex C18 column with a Security Guard ULTRA guard column with gradient elution using a mobile phase of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. This methodology was applied to baseline (control), chlortetracycline (CTC) treated, florfenicol treated and tulathromycin treated white-tailed deer serum and urine samples.
Assuntos
Antibacterianos/farmacologia , Cervos/metabolismo , Serotonina/metabolismo , Animais , Cervos/sangue , Cervos/urina , Dissacarídeos/farmacologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Limite de Detecção , Masculino , Padrões de Referência , Serotonina/sangue , Serotonina/urina , Tianfenicol/análogos & derivados , Tianfenicol/farmacologiaRESUMO
The 5-HT3 receptors are serotonin-gated ion channels that physically couple with purinergic P2X2 receptors to trigger a functional cross-inhibition leading to reciprocal channel occlusion. Although this functional receptor-receptor coupling seems to serve a modulatory role on both channels, this might not be its main physiological purpose. Using primary cultures of rat hippocampal neurons as a quantitative model of polarized targeting, we show here a novel function for this interaction. In this model, 5-HT3A receptors did not exhibit by themselves the capability of distal targeting in dendrites and axons but required the presence of P2X2R for their proper subcellular localization. 5-HT3AR distal targeting occurred with a delayed time course and exhibited a neuron phenotype dependency. In the subpopulation of neurons expressing endogenous P2X2R, 5-HT3AR distal neuritic localization correlated with P2X2R expression and could be selectively inhibited by P2X2R RNA interference. Cotransfection of both receptors revealed a specific colocalization, cotrafficking in common surface clusters, and the axonal rerouting of 5-HT3AR. The physical association between the two receptors was dependent on the second intracellular loop of the 5-HT3A subunit, but not on the P2X2R C-terminal tail that triggers the functional cross-inhibition with the 5-HT3AR. Together, these data establish that 5-HT3AR distal targeting in axons and dendrites primarily depends on P2X2R expression. Because several P2XR have now been shown to functionally interact with several other members of the 4-TMD family of receptor channels, we propose to reconsider the real functional role for this receptor family, as trafficking partner proteins dynamically involved in other receptors targeting. SIGNIFICANCE STATEMENT: So far, receptor targeting mechanisms were found to involve intracellular partner proteins or supramolecular complexes that couple receptors to cytoskeletal elements and recruit them into cargo vesicles. In this paper, we describe a new trafficking mechanism for the neuronal serotonin 5-HT3A ionotropic channel receptor, in which the role of routing partner is endowed by a functionally interacting purinergic receptor: the P2X2 receptor. This work not only unveils the mechanism by which 5-HT3 receptors can reach their axonal localization required for the control of neurotransmitter release, but also suggests that, in addition to their modulatory role, the family of P2X receptors could have a previously undescribed functional role of trafficking partner proteins dynamically involved in the targeting of other receptors.
Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Canais Iônicos de Abertura Ativada por Ligante/química , Camundongos , Neurônios/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X2/química , Receptores 5-HT3 de Serotonina/química , Xenopus laevisRESUMO
Among the mechanisms underlying the development of L-dopa-induced dyskinesia (LID) in Parkinson's disease, complex alterations in dopamine signaling in D1 receptor (D1R)-expressing medium spiny striatal neurons have been unraveled such as, but not limited to, dysregulation of D1R expression, lateral diffusion, intraneuronal trafficking, subcellular localization and desensitization, leading to a pathological anchorage of D1R at the plasma membrane. Such anchorage is partly due to a decreased proteasomal activity that is specific of the L-dopa-exposed dopamine-depleted striatum, results from D1R activation and feeds-back the D1R exaggerated cell surface abundance. The precise mechanisms by which L-dopa affects striatal proteasome activity remained however unknown. We here show, in a series of in vitro ex vivo and in vivo models, that such rapid modulation of striatal proteasome activity intervenes through D1R-mediated disassembly of the 26S proteasome rather than change in transcription or translation of proteasome or proteasome subunits intraneuronal relocalization.
Assuntos
Corpo Estriado/enzimologia , Transtornos Parkinsonianos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Benzazepinas/farmacologia , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtornos Parkinsonianos/enzimologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
Melanocytes are melanin-producing cells and with emerging innate immune functions including the expression of antiviral interferon-type I cytokines. We herein ascertained the susceptibility of the human melanocytes to Ross River alphavirus (RRV) infection and analyzed the subsequent immune responses. We demonstrated for the first time that (1) SKMEL-28 melanocyte cell line was susceptible to RRV infection and displaying major cytopathic activities and (2) RRV interfered with the interferon-type I response by altering nuclear translocation of pSTAT1 and pSTAT2 in infected SKMEL-28. These results suggest that the human melanoma cell line SKMEL-28 is a valuable model to analyze the mechanisms involved in severe skin manifestations and melanocyte's immunity at the portal of entry of major infection by arboviruses.
Assuntos
Interferon Tipo I/genética , Melanócitos/metabolismo , Ross River virus/patogenicidade , Linhagem Celular , Efeito Citopatogênico Viral , Humanos , Melanócitos/virologiaRESUMO
Enhanced motivation to take drugs is a central characteristic of addiction, yet the neural underpinning of this maladaptive behavior is still largely unknown. Here, we report a D1-like dopamine receptor (DRD1)-mediated long-term potentiation of GABAA-IPSCs (D1-LTPGABA) in the oval bed nucleus of the stria terminalis that was positively correlated with motivation to self-administer cocaine in rats. Likewise, in vivo intra-oval bed nucleus of the stria terminalis DRD1 pharmacological blockade reduced lever pressing for cocaine more effectively in rats showing enhanced motivation toward cocaine. D1-LTPGABA resulted from enhanced function and expression of G-protein-independent DRD1 coupled to c-Src tyrosine kinases and required local release of neurotensin. There was no D1-LTPGABA in rats that self-administered sucrose, in those with limited cocaine self-administration experience, or in those that received cocaine passively (yoked). Therefore, our study reveals a novel neurophysiological mechanism contributing to individual motivation to self-administer cocaine, a critical psychobiological element of compulsive drug use and addiction.
Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Potenciação de Longa Duração/fisiologia , Motivação/fisiologia , Receptores de Dopamina D1/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Dopamina/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Motivação/efeitos dos fármacos , Neurotensina/metabolismo , Ratos , Ratos Long-Evans , Reforço Psicológico , Autoadministração , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/fisiologia , Sinapses/efeitos dos fármacosRESUMO
BACKGROUND: Pre-pregnancy overweight and obesity promote deleterious health impacts on both mothers during pregnancy and the offspring. Significant changes in the maternal peripheral blood mononuclear cells (PBMCs) gene expression due to obesity are well-known. However, the impact of pre-pregnancy overweight on immune cell gene expression during pregnancy and its association with maternal and infant outcomes is not well explored. METHODS: Blood samples were collected from healthy normal weight (NW, pre-pregnancy BMI 18.5-24.9) or overweight (OW, pre-pregnancy BMI 25-29.9) 2nd parity pregnant women at 12, 24 and 36 weeks of pregnancy. PBMCs were isolated from the blood and subjected to mRNA sequencing. Maternal and infant microbiota were analyzed by 16S rRNA gene sequencing. Integrative multi-omics data analysis was performed to evaluate the association of gene expression with maternal diet, gut microbiota, milk composition, and infant gut microbiota. RESULTS: Gene expression analysis revealed that 453 genes were differentially expressed in the OW women compared to NW women at 12 weeks of pregnancy, out of which 354 were upregulated and 99 were downregulated. Several up-regulated genes in the OW group were enriched in inflammatory, chemokine-mediated signaling and regulation of interleukin-8 production-related pathways. At 36 weeks of pregnancy healthy eating index score was positively associated with several genes that include, DTD1, ELOC, GALNT8, ITGA6-AS1, KRT17P2, NPW, POT1-AS1 and RPL26. In addition, at 36 weeks of pregnancy, genes involved in adipocyte functions, such as NG2 and SMTNL1, were negatively correlated to human milk 2'FL and total fucosylated oligosaccharides content collected at 1 month postnatally. Furthermore, infant Akkermansia was positively associated with maternal PBMC anti-inflammatory genes that include CPS1 and RAB7B, at 12 and 36 weeks of pregnancy. CONCLUSIONS: These findings suggest that prepregnancy overweight impacts the immune cell gene expression profile, particularly at 12 weeks of pregnancy. Furthermore, deciphering the complex association of PBMC's gene expression levels with maternal gut microbiome and milk composition and infant gut microbiome may aid in developing strategies to mitigate obesity-mediated effects.
Assuntos
Microbioma Gastrointestinal , Leite Humano , Humanos , Feminino , Gravidez , Adulto , Leite Humano/química , Lactente , Leucócitos Mononucleares/metabolismo , Sobrepeso/imunologia , Sobrepeso/microbiologia , Expressão Gênica , Recém-Nascido , RNA Ribossômico 16S/genética , Obesidade/microbiologia , Obesidade/imunologiaRESUMO
Introduction: Maternal diet modifies profiles of human milk oligosaccharides (HMOs), carotenoids, and polyphenols in human milk (HM). However, substantial variability in profiles exists between women, highlighting the complexity of non-dietary factors modulating these profiles. The objective of this study was to carry out a secondary analysis exploring the effect of maternal diet on HM carotenoids and polyphenols and relationships between dietary modulation of HM bioactives (carotenoids, polyphenols, and oligosaccharides) and maternal α1,2-fucosyltransferase 2 (FUT2) secretor phenotype. Methods: In this pilot study, 16 exclusively breastfeeding women with obesity were enrolled between 4 and 5 months postpartum. The women were provided a 4-week meal plan consistent with the 2020 Dietary Guidelines for Americans (DGA). HM was collected for 24 h at baseline and post-intervention. Maternal FUT2 secretor phenotype was determined by 2'-fucosyllactose concentration in HM (non-secretor: < 100 nmol/ml; secretor: ≥100 nmol/ml). Concentrations of carotenoids and HMOs were determined by LC and polyphenol metabolites by UPLC-MS/MS. Results: Thirteen women completed the study (6 secretors, 7 non-secretors). The change in HM concentrations of the HMOs lacto-N-tetraose (LNT, p = 0.007), lacto-N-fucopentaose II (LNFP II, p = 0.02), difucosyllacto-N-tetraose (DFLNT, p = 0.003), and disialyllacto-N-tetraose (DSLNT, p = 0.003) and polyphenol metabolites 4-hydroxybenzoic acid (4-HBA, p = 0.08) and ferulic acid (p = 0.02) over the intervention time frame was differentially associated with maternal secretor status. 4-HBA and ferulic acid positively correlated with HMOs LNT and DSLNT (rrm = 0.82-0.90, p = 0.03-0.06) for secretors but not for non-secretors. Only secretors demonstrated a negative correlation between 4-HBA and DFLNT (rrm = -0.94, p = 0.001). Discussion: The influence of maternal diet on composition of HMOs and polyphenol metabolites in HM differs based on maternal secretor status. Consideration of non-dietary factors is needed to evaluate differences in response of HM bioactives to dietary modulation.
RESUMO
Introduction: Maternal obesity is associated with increased concentrations of human milk (HM) obesogenic hormones, pro-inflammatory cytokines, and oligosaccharides (HMOs) that have been associated with infant growth and adiposity. The objective of this pilot study was to determine if adherence to a Mediterranean meal plan during lactation modulates macronutrients and bioactive molecules in human milk from mothers with obesity. Methods: Sixteen healthy, exclusively breastfeeding women with obesity (body mass index ≥30 kg/m2) enrolled between 4 and 5 months postpartum. The women followed a 4-week Mediterranean meal plan which was provided at no cost. Maternal and infant anthropometrics, HM composition, and infant intakes were measured at enrollment and at weeks 2 and 4 of the intervention. Thirteen mother-infant dyads completed the study. Additionally, participants from an adjacent, observational cohort who had obesity and who collected milk at 5 and 6 months postpartum were compared to this cohort. Results: Participants' healthy eating index scores improved (+27 units, p < 0.001), fat mass index decreased (-4.7%, p < 0.001), and daily energy and fat intake were lower (-423.5 kcal/day, p < 0.001 and-32.7 g/day, p < 0.001, respectively) following the intervention. While HM macronutrient concentrations did not change, HM leptin, total human milk oligosaccharides (HMOs), HMO-bound fucose, Lacto-N-fucopentaose (LNFP)-II, LNFP-III, and difucosyllacto-N-tetrose (DFLNT) concentrations were lower following the intervention. Infant intakes of leptin, tumor necrosis factor (TNF)-α, total HMOs, HMO-bound fucose, LNFP-III and DFLNT were lower following the intervention. Specific components of the maternal diet (protein and fat) and specific measures of maternal diet quality (protein, dairy, greens and beans, fruit and vegetables) were associated with infant intakes and growth. Discussion: Adherence to a Mediterranean meal plan increases dietary quality while reducing total fat and caloric intake. In effect, body composition in women with obesity improved, HM composition and infants' intakes were modulated. These findings provide, for the first time, evidence-based data that enhancing maternal dietary quality during lactation may promote both maternal and child health. Longer intervention studies examining the impact of maternal diet quality on HM composition, infant growth, and infant development are warranted.
RESUMO
Aberrant membrane localization of dopamine D(1) receptor (D1R) is associated with L-DOPA-induced dyskinesia (LID), a major complication of L-DOPA treatment in Parkinson's disease (PD). Since the proteasome plays a central role in modulating neuronal response through regulation of neurotransmitter receptor intraneuronal fate, we hypothesized that the ubiquitine-proteasome proteolytic pathway could be impaired in LID. Those LIDs are actually associated with a striatum-specific decrease in proteasome catalytic activity and accumulation of polyubiquitinated proteins in experimental rodent and monkey parkinsonism. We then demonstrated that such decreased proteasome catalytic activity (1) results from D1R activation and (2) feed-back the D1R abnormal trafficking, i.e., its exaggerated cell surface abundance. We further showed that the genetic invalidation of the E3 ubiquitin-protein ligase parkin PD gene leads to exaggerated abnormal involuntary movements compared with wild-type mice. We thus established in an unprecedented series of experimental models that impairment of the ubiquitine-proteasome system at specific nodes (E3 ligase parkin, polyubiquitination, proteasome catalytic activity) leads to the same phenomenon, i.e., aberrant behavioral response to dopamine replacement therapy in PD, highlighting the intimate interplay between dopamine receptor and proteasome activity in a nondegenerative context.
Assuntos
Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Receptores de Dopamina D1/agonistas , Animais , Modelos Animais de Doenças , Agonistas de Dopamina/toxicidade , Discinesia Induzida por Medicamentos/fisiopatologia , Feminino , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Transtornos Parkinsonianos/enzimologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/fisiologiaRESUMO
The pattern of activity of globus pallidus (GP) neurons is tightly regulated by GABAergic inhibition. In addition to extrinsic inputs from the striatum (STR-GP) the other source of GABA to GP neurons arises from intrinsic intranuclear axon collaterals (GP-GP). While the contribution of striatal inputs has been studied, notably its hyperactivity in Parkinson's disease (PD), the properties and function of intranuclear inhibition remain poorly understood. Our objective was therefore to test the impact of chronic dopamine depletion on pallido-pallidal transmission. Using patch-clamp whole-cell recordings in rat brain slices, we combined electrical and optogenetic stimulations with pharmacology to differentiate basic synaptic properties of STR-GP and GP-GP GABAergic synapses. GP-GP synapses were characterized by activity-dependent depression and insensitivity to the D(2) receptor specific agonist quinpirole and STR-GP synapses by frequency-dependent facilitation and quinpirole modulation. Chronic dopamine deprivation obtained in 6-OHDA lesioned animals boosted the amplitude of GP-GP IPSCs but did not modify STR-GP transmission and increased the amplitude of miniature IPSCs. Replacement of calcium by strontium confirmed that the quantal amplitude was increased at GP-GP synapses. Finally, we demonstrated that boosted GP-GP transmission promotes resetting of autonomous activity and rebound-burst firing after dopamine depletion. These results suggest that GP-GP synaptic transmission (but not STR-GP) is augmented by chronic dopamine depletion which could contribute to the aberrant GP neuronal activity observed in PD.
Assuntos
Neurônios GABAérgicos/fisiologia , Globo Pálido/fisiopatologia , Potenciais Pós-Sinápticos Inibidores , Potenciais Pós-Sinápticos em Miniatura , Transtornos Parkinsonianos/fisiopatologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Dopamina/deficiência , Agonistas de Dopamina/farmacologia , Optogenética , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Estrôncio/farmacologiaRESUMO
The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at postsynaptic sites determines neuronal outputs in the CNS. Using immunohistochemical and electrophysiological approaches, we first reveal that steroidogenic factor 1 (SF-1) green fluorescent protein (GFP)-positive neurons in the ventromedial nucleus of the hypothalamus express P2X4 subunits that are activated by exogenous ATP. Increased membrane expression of P2X4 channels by using a peptide competing with P2X4 intracellular endocytosis motif enhances neuronal excitability of SF-1 GFP-positive neurons. This increased excitability is inhibited by a P2X receptor antagonist. Furthermore, increased surface P2X4 receptor expression significantly decreases the frequency and the amplitude of GABAergic postsynaptic currents of SF-1 GFP-positive neurons. Co-immunopurification and pulldown assays reveal that P2X4 receptors complex with aminobutyric acid, type A (GABA(A)) receptors and demonstrate that two amino acids in the carboxyl tail of the P2X4 subunit are crucial for its physical association with GABA(A) receptors. Mutation of these two residues prevents the physical association, thereby blocking cross-inhibition between P2X4 and GABA(A) receptors. Moreover, disruption of the physical coupling using competitive peptides containing the identified motif abolishes current inhibition between P2X4 and GABA(A) receptors in recombinant system and P2X4 receptor-mediated GABAergic depression in SF-1 GFP-positive neurons. Our present work thus provides evidence for cross-talk between excitatory and inhibitory receptors that appears to be crucial in determining GABAergic synaptic strength at a central synapse.
Assuntos
Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Sinapses/metabolismo , Motivos de Aminoácidos , Animais , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína/fisiologia , Ratos , Receptores de GABA-A/genética , Receptores Purinérgicos P2X4/genética , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Sinapses/genética , Xenopus laevisRESUMO
BACKGROUND: Distinct molecular, inflammatory, and metabolic signatures are present in oocytes and follicular fluid derived from women with obesity when compared to those derived from normal weight women, which suggest existing signals that may program future offspring for metabolic diseases. This study aims to assess the feasibility and efficacy of a peri-conception nutrition and exercise intervention on mitigating obesity-associated changes in oocyte gene expression profiles and follicular fluid metabolites. METHODS: This single blinded randomized control trial will include 120 women with a BMI of 25-45 kg/m2, ≥21 years of age, and undergoing in vitro fertilization (IVF) treatments. Participants will be randomized to standard of care (N = 60) or an intervention group (N = 60) in a block design by polycystic ovary syndrome status. The intervention will combine a dietary component (Mediterranean meal plan) with exercise prescription following the Physical Activity Guidelines for Americans. Participants will be assessed pre- and post-intervention. The standard of care group will be offered to join the intervention group if the IVF treatments are unsuccessful as a cross over design. Recruitment is anticipated to start in July of 2021. Primary outcomes will include single oocyte gene expression profiles and follicular fluid metabolites. Mann-Whitney U nonparametric tests will be used to assess potential differences for each stratum. Follicular fluid and serum metabolites will be analyzed using a one-factor Analysis of Covariance (ANCOVA) at four levels, pair-wise comparisons using Tukey-Kramer post-hoc tests will be used to identify groups whose means differ significantly while retaining the family-wise error rate at 5%. When the design is balanced, two-way Analysis of Variance (ANOVA), or non-parametric Friedman test will be used in data analysis. Additionally, general linear models and ANCOVA may be used to control for covariates. Significance will be set at p < 0.05. Findings will be disseminated via peer-reviewed manuscripts and presentations at scientific conferences. DISCUSSION: This study will provide novel data and key information on the impact of a dietary and exercise intervention on oocyte gene expression and follicular fluid content. Results will demonstrate the potential of such intervention in mitigating obesity-induced changes in oocyte gene expression and follicular fluid metabolites. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT04273048 ): submitted November 13, 2019; posted February 17, 2020.
RESUMO
Xenopus oocytes serve as a standard heterologous expression system for the study of various ligand-gated ion channels including ATP P2X receptors. Here we describe the whole-cell two-electrode voltage clamp and biotinylation/Western blotting techniques to investigate the functional properties and surface trafficking from P2X-expressing oocytes.
Assuntos
Trifosfato de Adenosina/metabolismo , Biotinilação/métodos , Membrana Celular/metabolismo , Eletrofisiologia/métodos , Oócitos/fisiologia , Receptores Purinérgicos P2X/fisiologia , Xenopus laevis/fisiologia , Animais , Western Blotting , Movimento Celular , Ativação do Canal Iônico , Oócitos/citologia , Técnicas de Patch-Clamp/métodosRESUMO
INTRODUCTION: Despite well-established guidelines and benefits to exercise, the majority of pregnant women in the USA fail to meet recommended activity levels. Studies need to determine feasible ways to translate clinical interventions to community settings by engaging pregnant women in widely accessible locations to ensure benefits to more women. The aim of this study is to adapt and determine feasibility, acceptability and fidelity of the research clinic-based Expecting intervention (NCT02125149) with pregnant women with obesity in community settings. METHODS AND ANALYSIS: We will use the Replicating Effective Programs (REP) to guide the adaptation and implementation of the research clinic-based intervention into the community. REP provides a four-phase process for implementing evidence-based interventions including collection of feedback from community stakeholders, iterative piloting of the intervention in the community and a process for standardising the intervention across community settings. Following adaptation, the updated intervention will be piloted. The pilot study will include 60 expecting women. We will randomise half to receive the community-adapted Expecting intervention (intervention, N=30) and half to receive standard of care (control, N=30). Feasibility and Acceptability of Intervention Measures are primary outcomes as key indicators of feasibility. Secondary outcomes will include the number of intervention sessions completed, the change in the number of minutes of physical activity as measured by accelerometer, as well as change in health indicators from enrolment to time of delivery and 6 months post-delivery (ie, body mass index, blood pressure and total cholesterol). ETHICS AND DISSEMINATION: This study has been approved by the Institutional Review Board (#260132). Findings will be shared with study participants and stakeholder advisors through written summaries and in-person presentations; results will also be shared through presentations at scientific conferences and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04298125; Pre-results.
Assuntos
Exercício Físico , Gestantes , Terapia por Exercício , Estudos de Viabilidade , Feminino , Humanos , Projetos Piloto , Gravidez , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
This paper applies a social metabolism framework and energy flow analysis for evaluating agroecosystem and land use transitions in food-energy-water systems using the Upper Snake River Basin (USBR), Idaho, USA as a case-study. The study area is one of the primary agricultural regions of the State of Idaho. Dairy products are the primary agricultural outputs of the region; therefore, we modified a biomass accounting framework to explicitly incorporate the role of manure in the agroecosystem. Despite the increase of cropland between 2002 and 2012 in the basin, a decrease in energy input was observed for crop production. An increase in the industrial energy inputs for dairy production, on the other hand, showed that the basin is a clear example of a metabolic industrialized farm system - an example of land use intensification. We compare the energy return on investments (EROIs) as an indicator of agroecosystem transition for both crop and dairy production during the period 2002 to 2012. Contrary to our expectations, the analysis suggests that livestock production is a relatively energy efficient process in land management in the basin. This is due to the reuse of nutrient by-products from livestock as well as the refuse and residues from crop farming. At the same time, the findings provide insights on the percentage of manure to be reinvested as compost that would improve energy production efficiency. However, the reuse of manure, as it is managed in the basin, may have a negative implication on the nutrient balance of the agroecosystem that needs further investigation. Nonetheless, there is market potential for the reuse and reinvestment of biomass to make energy production in the basin more efficient.
Assuntos
Rios , Agricultura , Fazendas , Idaho , ÁguaRESUMO
OBJECTIVES: Few studies have investigated pharmacologic treatment for pediatric post-traumatic stress disorder (PTSD). Prazosin, an alpha-1 adrenergic receptor antagonist, has been studied and demonstrated to be efficacious in an adult population for PTSD related sleep disturbances; however, in the pediatric population, data is limited to case reports and retrospective case series. This study prospectively assessed the safety and effects of Prazosin on PTSD symptoms in a pediatric sample. METHODS: Since 2016, 18 patients with PSTD under the age of 15 admitted in a child and adolescent psychiatric unit were challenged with prazosin as part of a treatment protocol. PTSD symptoms and adverse effects were collected weekly and prospectively assessed each month with validated clinical scales. All data were retrospectively analyzed. This treatment protocol and the evaluation of clinical data were approved by our Ethical committee for research on preexisting data at the University Teaching Hospital of Rouen. RESULTS: Among the 18 patients (10 girls and 8 boys), 13 (72%) had experienced sexual abuse and 5 (28%) family violence. After 1 month of treatment with a mean prazosin dose of 2.16 ( ± 0.6) mg/day, the CGI-S score significantly decreased from 5.3 ( ± 0.9) to 2.9 ( ± 0.7) (improvement of 43%). The mean total UCLA-PTSD-RI score significantly decreased 11.4 points ( ± 5.4) during the first week and 37.9 ( ± 16) during the first month, leading to an improvement of 20% and 67%, respectively. The improvement was significant irrespective of trauma exposure or sex. No adverse effects were reported except for one patient (hypotension). CONCLUSION: Consistent with prior case reports and retrospective reviews, our retrospective analysis of data prospectively and systematically assessed among 18 patients suggests that prazosin is well-tolerated and associated with improvement in symptoms for pediatric PTSD.
RESUMO
Since 2006, a new EC regulation has imposed 2.0 microg/l as the upper limit for OTA concentration in wines (CR 1881/2006). OTA production results from a harmful combination of skin lesions and favourable conditions for A. carbonarius growth, namely the air temperature and humidity, and the berry sugar content. The aim of our research was to highlight in vivo interaction between the number of damaged berries and the conditions for fungus development in relation to OTA concentration in wine. A survey carried out on the 2005 production from 156 vineyards bordering on the French Mediterranean enabled a link to be made between information on crop management, vineyard characteristics, meteorological data and the OTA concentration in wine. With humid air conditions during the susceptible berry period of 20 days before harvest, combined with a large number of damaged berries and a temperature conducive to both fungus growth and OTA production, critical levels of OTA concentration in wine were observed. Within the range of average daily air temperatures investigated, from 17.2 to 22.8 degrees C, during the susceptible berry period, 21 degrees C appeared to be the lower limit below which fungus growth and OTA production were not sufficient to result in critical levels of OTA concentration in wine. In our experiment, an average daily air temperature under 21 degrees C corresponded to an average minimum daily air temperature under 15 degrees C, below which fungus growth stopped under in vitro conditions. The importance of the berry sugar content before harvest was also demonstrated and our results suggest that the risk of wine contamination by OTA might be predicted from the number of damaged berries and the berry sugar content, along with climate monitoring.