Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242752

RESUMO

It is key to fight bacterial adhesion to prevent biofilm establishment on biomaterials. Surface immobilization of antimicrobial peptides (AMP) is a promising strategy to avoid bacterial colonization. This work aimed to investigate whether the direct surface immobilization of Dhvar5, an AMP with head-to-tail amphipathicity, would improve the antimicrobial activity of chitosan ultrathin coatings. The peptide was grafted by copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry by either its C- or N- terminus to assess the influence of peptide orientation on surface properties and antimicrobial activity. These features were compared with those of coatings fabricated using previously described Dhvar5-chitosan conjugates (immobilized in bulk). The peptide was chemoselectively immobilized onto the coating by both termini. Moreover, the covalent immobilization of Dhvar5 by either terminus enhanced the antimicrobial effect of the chitosan coating by decreasing colonization by both Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Relevantly, the antimicrobial performance of the surface on Gram-positive bacteria depended on how Dhvar5-chitosan coatings were produced. An antiadhesive effect was observed when the peptide was grafted onto prefabricated chitosan coatings (film), and a bactericidal effect was exhibited when coatings were prepared from Dhvar5-chitosan conjugates (bulk). This antiadhesive effect was not due to changes in surface wettability or protein adsorption but rather depended on variations in peptide concentration, exposure, and surface roughness. Results reported in this study show that the antibacterial potency and effect of immobilized AMP vary greatly with the immobilization procedure. Overall, independently of the fabrication protocol and mechanism of action, Dhvar5-chitosan coatings are a promising strategy for the development of antimicrobial medical devices, either as an antiadhesive or contact-killing surface.

2.
Pharmaceutics ; 14(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559239

RESUMO

The major risk factor associated with the development of gastric cancer is chronic infection with Helicobacter pylori. The available treatments, based on a cocktail of antibiotics, fail in up to 40% of patients and disrupt their gut microbiota. The potential of blank nanostructured lipid carriers (NLC) for H. pylori eradication was previously demonstrated by us. However, the effect of NLC charge, size and protein corona on H. pylori-specific bactericidal activity herein studied was unknown at that time. All developed NLC formulations proved bactericidal against H. pylori. Although cationic NLC had 10-fold higher bactericidal activity than anionic NLC, they lacked specificity, since Lactobacillus acidophilus was also affected. Anionic NLC achieved complete clearance in both H. pylori morphologies (rod- and coccoid-shape) by inducing alterations in bacteria membranes and the cytoplasm, as visualized by transmission electron microscopy (TEM). The presence of an NLC protein corona, composed of 93% albumin, was confirmed by mass spectrometry. This protein corona delayed the bactericidal activity of anionic NLC against H. pylori and hindered NLC activity against Escherichia coli. Overall, these results sustain the use of NLC as a promising antibiotic-free strategy targeting H. pylori.

3.
Biomater Sci ; 9(9): 3362-3377, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949373

RESUMO

Thrombosis and infection are the leading causes of blood-contacting device (BCD) failure, mainly due to the poor performance of existing biomaterials. Poly(2-hydroxyethyl methacrylate) (pHEMA) has excellent hemocompatibility but the weak mechanical properties impair its use as a bulk material for BCD. As such, pHEMA has been explored as a coating, despite the instability and difficulty of attachment to the underlying polymer compromise its success. This work describes the hydrogel composites made of pHEMA and graphene-based materials (GBM) that meet the biological and mechanical requirements for a stand-alone BCD. Five GBM differing in thickness, oxidation degree, and lateral size were incorporated in pHEMA, revealing that only oxidized-GBM can reinforce pHEMA. pHEMA/oxidized-GBM composites are cytocompatible and prevent the adhesion of endothelial cells, blood platelets, and bacteria (S. aureus), thus maintaining pHEMA's anti-adhesive properties. As a proof of concept, the thrombogenicity of the tubular prototypes of the best formulation (pHEMA/Graphene oxide (GO)) was evaluated in vivo, using a porcine arteriovenous-shunt model. pHEMA/GO conduits withstand the blood pressure and exhibit negligible adhesion of blood components, revealing better hemocompatibility than ePTFE, a commercial material for vascular access. Our findings reveal pHEMA/GO, a synthetic and off-the-shelf hydrogel, as a preeminent material for the design of blood-contacting devices that prevent thrombosis and bacterial adhesion.


Assuntos
Grafite , Poli-Hidroxietil Metacrilato , Animais , Materiais Biocompatíveis/farmacologia , Células Endoteliais , Staphylococcus aureus , Suínos
4.
J Biomed Opt ; 21(8): 87005, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27548775

RESUMO

The detection of thrombin based on aptamer binding is studied using two different optical fiber-based configurations: long period gratings coated with a thin layer of titanium dioxide and surface plasmon resonance devices in optical fibers coated with a multilayer of gold and titanium dioxide. These structures are functionalized and the performance to detect thrombin in the range 10 to 100 nM is compared in transmission mode. The sensitivity to the surrounding refractive index (RI) of the plasmonic device is higher than 3100 nm RIU−1 in the RI range 1.335 to 1.355, a factor of 20 greater than the sensitivity of the coated grating. The detection of 10 nM of thrombin was accomplished with a wavelength shift of 3.5 nm and a resolution of 0.54 nM.


Assuntos
Trombina/análise , Aptâmeros de Peptídeos/metabolismo , Ouro/química , Limite de Detecção , Fibras Ópticas , Refratometria , Ressonância de Plasmônio de Superfície , Titânio/química
5.
Biomaterials ; 26(18): 3891-99, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15773038

RESUMO

Surfaces of devices that contact blood accumulate adsorbed and denatured proteins perhaps triggering activation of the coagulation system. A renewable layer of albumin would biologically "passivate" the surface and prevent thrombus formation. Based on the approach of selectively binding albumin to fatty acids, different percentages of a compound with 18 carbons (C18) were immobilized on OH-terminated self-assembled monolayers (SAMs). Fourier transform infrared reflection absorption spectroscopy (IRAS), ellipsometry, contact angle (and surface free energy) and X-ray photoelectron spectroscopy (XPS) measurements were used to characterize these surfaces and proved that there is an efficient immobilization of C18. There is an increase of the thickness and hydrophobicity of SAMs with an increasing percentage of C18. Adsorption of human serum albumin (HSA) was evaluated using radiolabelled (125)I-HSA and IRAS. This study showed a gradual increase of HSA adsorption with the increase of surface hydrophobicity. Regarding competitive binding and exchangeability of albumin towards fibrinogen, it was proved, by radiolabelling, that SAMs prepared from solutions with 2.5% C18 presented considerable adsorption in a selective and reversible way.


Assuntos
Materiais Revestidos Biocompatíveis/química , Cristalização/métodos , Fibrinogênio/química , Albumina Sérica/química , Compostos de Sulfidrila/química , Adsorção , Materiais Revestidos Biocompatíveis/análise , Fibrinogênio/análise , Humanos , Radical Hidroxila , Teste de Materiais , Ligação Proteica , Albumina Sérica/análise , Compostos de Sulfidrila/análise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA