Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nano Lett ; 14(3): 1520-5, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24571659

RESUMO

Nanopositioning of single quantum emitters to control their coupling to integrated photonic structures is a crucial step in the fabrication of solid-state quantum optics devices. We use the optical near-field enhancement produced by nanofabricated gold antennas subject to near-infrared illumination to deterministically trap and position single nanodiamonds (NDs) hosting nitrogen-vacancy (NV) centers. The positioning of the NDs at the antenna regions of maximum field intensity is first characterized using both fluorescence and electron microscopy imaging. We further study the interaction between the nanoantenna and the delivered NV center by analyzing its change in fluorescence lifetime, which is driven by the increase in the local density of optical states at the trapping positions. Additionally, the plasmonic enhancement of the near-field intensity allows us to optically control the NV excited lifetime using relatively low NIR illumination intensities, some 20 times lower than in the absence of the antennas.

2.
Nat Mater ; 12(5): 426-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503011

RESUMO

Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field, is much less exploited. Here, we use two-photon luminescence (TPL) microscopy to reveal the SP-LDOS in thin single-crystalline triangular gold nanoprisms produced by a quantitative one-pot synthesis at room temperature. Variations of the polarization and the wavelength of the incident light redistribute the TPL intensity into two-dimensional plasmonic resonator patterns that are faithfully reproduced by theoretical simulations. We demonstrate that experimental TPL maps can be considered as the convolution of the SP-LDOS with the diffraction-limited Gaussian light beam. Finally, the SP modal distribution is tuned by the spatial coupling of nanoprisms, thus allowing a new modal design of plasmonic information processing devices.

3.
Opt Express ; 21(4): 4551-9, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23481988

RESUMO

We show that the interaction between localized surface plasmons sustained by a metallic nano-antenna and delocalized phonons lying at the surface of an heteropolar semiconductor can generate a new class of hybrid electromagnetic modes. These plasphonic modes are investigated using an analytical model completed by accurate Green dyadic numerical simulations. When surface plasmon and surface phonon frequencies match, the optical resonances exhibit a large Rabi splitting typical of strongly interacting two-level systems. Based on numerical simulations of the electric near-field maps, we investigate the nature of the plaphonic excitations. In particular, we point out a strong local field enhancement boosted by the phononic surface. This effect is interpreted in terms of light harvesting by the plasmonic antenna from the phononic surface. We thus introduce the concept of active phononic surfaces that may be exploited for far-infared optoelectronic devices and sensors.


Assuntos
Luz , Modelos Teóricos , Refratometria/métodos , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Fótons
4.
Nano Lett ; 11(8): 3301-6, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21692453

RESUMO

In this letter, the ultrafast vibrational dynamics of individual gold nanorings has been investigated by femtosecond transient absorption spectroscopy. Two acoustic vibration modes have been detected and identified. The influence of the mechanical coupling at the nanoparticle/substrate interface on the acoustic vibrations of the nano-objects is discussed. Moreover, by changing the environment of the nanoring, we provide a clear evidence of the impact of the surrounding medium on the damping of the acoustic vibrations. Such results are reported here for the first time on individual nanoparticles. This work points out a new sensing method based on the sensitivity of the acoustic vibration damping to the surrounding medium.

5.
Nano Lett ; 11(2): 431-7, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21214216

RESUMO

This work is devoted to the fundamental understanding of the interaction between acoustic vibrations and surface plasmons in metallic nano-objects. The acoustoplasmonic properties of coupled spherical gold nanoparticles and nanodisk trimers are investigated experimentally by optical transmission measurements and resonant Raman scattering experiments. For excitation close to resonance with the localized surface plasmons of the nanodisk trimers, we are able to detect several intense Raman bands generated by the spherical gold nanoparticles. On the basis of both vibrational dynamics calculations and Raman selection rules, the measured Raman bands are assigned to fundamental and overtones of the quadrupolar and breathing vibration modes of the spherical gold nanoparticles. Simulations of the electric near-field intensity maps performed at the Raman probe wavelengths showed strong localization of the optical energy in the vicinity of the nanodisk trimers, thus corroborating the role of the interaction between the acoustic vibrations of the spherical nanoparticles and the surface plasmons of the nanodisk trimers. Acoustic phonons surface enhanced Raman scattering is here demonstrated for the first time for such coupled plasmonic systems. This work paves the way to surface plasmon engineering for sensing the vibrational properties of nanoparticles.


Assuntos
Acústica , Ouro/química , Modelos Químicos , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Espalhamento de Radiação
6.
Opt Express ; 19(6): 5587-95, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445198

RESUMO

Using numerical simulations, we demonstrate that fine shape details of gold nanoring-disks are responsible for significant modifications of their localized surface plasmon properties. The numerical results are supported by optical transmission measurements and by atomic force microscopy. In particular, we found that, depending on the ring wall sharpness, the spectral shift of the ring-like localized surface plasmon resonance can be as large as few hundred nanometers. These results shed the light on the strong sensitivity of the surface plasmon properties to very small deviations of the ring and disk shapes from the ideally flat surfaces and sharp edges. This effect is particularly important for tailoring the surface plasmon properties of metallic nanostructures presenting edges and wedges for applications in bio- and chemical sensing and for enhancement of light scattering.

7.
Opt Express ; 18(21): 22271-82, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941128

RESUMO

In this work we report on the observation of surface plasmon properties of periodic arrays of gold nanoring trimers fabricated by electron beam lithography. It is shown that the localized surface plasmon resonances of such gold ring trimers occur in the infrared spectral region and are strongly influenced by the nanoring geometry and their relative positions. Based on numerical simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to surface plasmon states arising from the strong intra-trimer electromagnetic interaction. We show that the nanoring trimer configuration allows for generating infrared surface plasmon resonances associated with strongly localized electromagnetic energy, thus providing plasmonic nanoresonators well-suited for sensing and surface enhanced near-infrared Raman spectroscopy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Algoritmos , Simulação por Computador , Elétrons , Microscopia Eletrônica de Varredura/métodos , Modelos Teóricos , Nanotecnologia/métodos , Radiação , Análise Espectral Raman/métodos , Propriedades de Superfície
8.
Nanotechnology ; 21(30): 305501, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20603533

RESUMO

Fabrication and surface plasmon properties of gold nanostructures consisting of periodic arrays of disk trimers are reported. Using electron beam lithography, disk diameters as small as 96 nm and gaps between disks as narrow as 10 nm have been achieved with an unprecedented degree of control and reproducibility. The disk trimers exhibit intense visible and infrared surface plasmon resonances which are studied as a function of the disk diameter and of the pitch between trimers. Based on simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to a single trimer response and to collective surface plasmon excitations involving electromagnetic interaction between the trimers. The sensing properties of the disk trimers are investigated using various coating media. The reported results demonstrate the possible use of gold disk trimers for dual wavelength chemical sensing.

9.
J Chem Phys ; 131(22): 224707, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20001076

RESUMO

Plasmonic structures are commonly used to both confine and enhance surface electromagnetic fields. In the past ten years, their peculiar optical properties have given rise to many promising applications ranging from high density data storage to surface optical trapping. In this context, we investigated both far-field and near-field optical response of a collection of densely packed silver nanocolumns embedded in amorphous aluminum oxide using the discrete dipole approximation. In the far field, a good fit of the calculated to the experimental absorption spectra can only be achieved when in addition to interaction between neighboring nanocolumns, a nanorod shape with periodic shrinks mimicking the experimental morphology of the nanocolumns is used. In the near field, modulated field intensities following the nanocolumns distribution and tunable with the incident wavelength are predicted outside the region occupied by the nanocolumns. This plasmonic image transfer has a resolution of approximately 1.8D where D is the diameter of the nanocolumns that in our case is 2.4 nm.

10.
Nat Commun ; 6: 7883, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26249363

RESUMO

Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

11.
Sci Rep ; 3: 1312, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23425921

RESUMO

Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm.

12.
ACS Nano ; 6(4): 3434-40, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22394263

RESUMO

Self-assembled plasmonic nanoparticle networks (PNN) composed of chains of 12 nm diameter crystalline gold nanoparticles exhibit a longitudinally coupled plasmon mode centered at 700 nm. We have exploited this longitudinal absorption band to efficiently confine light fields and concentrate heat sources in the close vicinity of these plasmonic chain networks. The mapping of the two phenomena on the same superstructures was performed by combining two-photon luminescence and fluorescence polarization anisotropy imaging techniques. Besides the light and heat concentration, we show experimentally that the planar spatial distribution of optical field intensity can be simply modulated by controlling the linear polarization of the incident optical excitation. On the contrary, the heat production, which is obtained here by exciting the structures within the optically transparent window of biological tissues, is evenly spread over the entire PNN. This contrasts with the usual case of localized heating in continuous nanowires, thus opening opportunities for these networks in light-induced hyperthermia applications. Furthermore, we propose a unified theoretical framework to account for both the nonlinear optical and thermal near-fields around PNN. The associated numerical simulations, based on a Green's function formalism, are in excellent agreement with the experimental images. This formalism therefore provides a versatile tool for the accurate engineering of optical and thermodynamical properties of complex plasmonic colloidal architectures.


Assuntos
Temperatura Alta , Luz , Nanopartículas/química , Ouro/química , Nanopartículas Metálicas/química , Modelos Moleculares , Modelos Teóricos , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA