Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metabolites ; 12(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208187

RESUMO

The ability of metabolomics to provide a snapshot of an individual's metabolic state makes it a very useful technique in neonatology for investigating the complex relationship between nutrition and the state of health of the newborn. Through an 1H-NMR metabolomics analysis, we aimed to investigate the metabolic profile of newborns by analyzing both urine and milk samples in relation to the birth weight of neonates classified as AGA (adequate for the gestational age, n = 51), IUGR (intrauterine growth restriction, n = 14), and LGA (large for gestational age, n = 15). Samples were collected at 7 ± 2 days after delivery. Of these infants, 42 were exclusively breastfed, while 38 received mixed feeding with a variable amount of commercial infant formula (less than 40%) in addition to breast milk. We observed a urinary spectral pattern for oligosaccharides very close to that of the corresponding mother's milk in the case of exclusively breastfed infants, thus mirroring the maternal phenotype. The absence of this good match between the infant urine and human milk spectra in the case of mixed-fed infants could be reasonably ascribed to the use of a variable amount of commercial infant formulas (under 40%) added to breast milk. Furthermore, our findings did not evidence any significant differences in the spectral profiles in terms of the neonatal customize centile, i.e., AGA (adequate for gestational age), LGA (large for gestational age), or IGUR (intrauterine growth restriction). It is reasonable to assume that maternal human milk oligosaccharide (HMO) production is not or is only minimally influenced by the fetal growth conditions for unknown reasons. This hypothesis may be supported by our metabolomics-based results, confirming once again the importance of this approach in the neonatal field.

2.
Microorganisms ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208921

RESUMO

In this study, the onset and shaping of the salivary and gut microbiota in healthy newborns during the first period of life has been followed, evaluating the impact of salivary microbiota on the development of early fecal microbial communities. The microbiota of 80 salivary and 82 fecal samples that were collected from healthy newborns in the first six months of life, was investigated by 16S rRNA amplicon profiling. The microbial relationship within and between the saliva and gut ecosystems was determined by correlation heatmaps and co-occurrence networks. Streptococcus and Staphylococcus appeared as early commensals in the salivary microbiota, dominating this ecosystem through the time, while Fusobacterium, Prevotella, Porphyromonas, Granulicatella, and Veillonella were late colonizers. Enterobacteriaceae, Staphylococcus and Streptococcus were gut pioneers, followed by the anaerobic Bifidobacterium, Veillonella, Eggerthella, and Bacteroides. Streptococcus, Staphylococcus, and Veillonella were shared by the gut and saliva ecosystems. The saliva and gut microbiota seem to evolve independently, driven by local adaptation strategies, except for the oral Streptococcus and Veillonella that are involved in gut microbiota development as seeding species. This study offers a piece of knowledge on how the oral microbiota may affect the gut microbiota in healthy newborns, shedding light onto new microbial targets for the development of therapies for early life intestinal dysbiosis.

3.
Front Physiol ; 10: 905, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379607

RESUMO

In recent years, the Mediterranean Sea has become an accumulation zone for waste generated by the 22 countries bordering its shores. Although the effects of plastic litter on the marine environment and on organisms have recently been studied in other areas, further information is needed for the Mediterranean Sea and, in particular, about plastics additives inputs and interactions with the biota and the trophic network, such as phthalates and bisphenol A. Plastic material production, use and disposal contribute also to the release of heavy metals into the environment, such as mercury (Hg), often used during the production of chlorine, the primary ingredient in PVC, lead (Pb) and cadmium (Cd), which are used as stabilizers in PVC and leach out of products during use and disposal. Our research aims to evaluate phthalates, bisphenol A and heavy metals contamination in Lepidopus caudatus (Pisces, Trichiuridae), which could be considered as a potential sentinel species. For the evaluation of toxicological effects, we evaluated the expression of vitellogenin and metallothioneins 1. In all samples analyzed, we have not found microplastics in the gastrointestinal tract but chemical analysis revealed the presence of high content of phthalates, and in particular high quantities of DIDP, DEHP, bis-benzylester phthalate, bis-butyl ester phthalate and mono-N-butyl ester phthalate in different organs. Instead, trace elements detected in tissue revealed a trend of concentrations generally higher in liver and intestine than gill and muscle tissues. Immunohistochemical analysis for anti-metallothionein 1 antibody showed a strong positivity of liver cells, both in females and males. Analysis for the anti-vitellogenin antibody showed in females a strong positivity both in the liver cells and in the gonads, in male specimens was found to be always negative except for a specimen, in which it was highlighted a positivity in some areas of the liver and of the gonad.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA