Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(26): 15066-15074, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554492

RESUMO

Cancer incidence increases exponentially with age when human telomeres are shorter. Similarly, telomerase reverse transcriptase (tert) mutant zebrafish have premature short telomeres and anticipate cancer incidence to younger ages. However, because short telomeres constitute a road block to cell proliferation, telomere shortening is currently viewed as a tumor suppressor mechanism and should protect from cancer. This conundrum is not fully understood. In our current study, we report that telomere shortening promotes cancer in a noncell autonomous manner. Using zebrafish chimeras, we show increased incidence of invasive melanoma when wild-type (WT) tumors are generated in tert mutant zebrafish. Tissues adjacent to melanoma lesions (skin) and distant organs (intestine) in tert mutants exhibited higher levels of senescence and inflammation. In addition, we transferred second generation (G2) tert blastula cells into WT to produce embryo chimeras. Cells with very short telomeres induced increased tumor necrosis factor1-α (TNF1-α) expression and senescence in larval tissues in a noncell autonomous manner, creating an inflammatory environment. Considering that inflammation is protumorigenic, we transplanted melanoma-derived cells into G2 tert zebrafish embryos and observed that tissue environment with short telomeres leads to increased tumor development. To test if inflammation was necessary for this effect, we treated melanoma transplants with nonsteroid anti-inflammatory drugs and show that higher melanoma dissemination can be averted. Thus, apart from the cell autonomous role of short telomeres in contributing to genome instability, we propose that telomere shortening with age causes systemic chronic inflammation leading to increased tumor incidence.


Assuntos
Melanoma/metabolismo , Telômero/metabolismo , Peixe-Zebra/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Melanoma/genética , Melanoma/imunologia , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Encurtamento do Telômero , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762484

RESUMO

Myotonic dystrophy 2 (DM2) is a genetic multi-systemic disease primarily affecting skeletal muscle. It is caused by CCTGn expansion in intron 1 of the CNBP gene, which encodes a zinc finger protein. DM2 disease has been successfully modeled in Drosophila melanogaster, allowing the identification and validation of new pathogenic mechanisms and potential therapeutic strategies. Here, we describe the principal tools used in Drosophila to study and dissect molecular pathways related to muscular dystrophies and summarize the main findings in DM2 pathogenesis based on DM2 Drosophila models. We also illustrate how Drosophila may be successfully used to generate a tractable animal model to identify novel genes able to affect and/or modify the pathogenic pathway and to discover new potential drugs.


Assuntos
Proteínas de Drosophila , Distrofia Miotônica , Animais , Drosophila melanogaster/genética , Distrofia Miotônica/genética , Drosophila , Íntrons/genética , Músculo Esquelético , Proteínas de Ligação a RNA , Proteínas de Drosophila/genética
3.
BMC Biol ; 18(1): 34, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216790

RESUMO

BACKGROUND: The ribonuclear protein TDP-43 has been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS), with genetic mutations being linked to the neurological symptoms of the disease. Though alterations in the intracellular distribution of TDP-43 have been observed in skeletal muscles of patients suffering from ALS, it is not clear whether such modifications play an active role in the disease or merely represent an expression of muscle homeostatic mechanisms. Also, the molecular and metabolic pathways regulated by TDP-43 in the skeletal muscle remain largely unknown. Here, we analyze the function of TBPH, the Drosophila melanogaster ortholog of TDP-43, in skeletal muscles. RESULTS: We modulated the activity of TDP-43 in Drosophila muscles by means of RNA interference and observed that it is required to promote the formation and growth of neuromuscular synapses. TDP-43 regulated the expression levels of Disc-large (Dlg), and restoring Dlg expression either in skeletal muscles or in motoneurons was sufficient to suppress the locomotive and synaptic defects of TDP-43-null flies. These results were validated by the observation of a decrease in Dlg levels in human neuroblastoma cells and iPSC-differentiated motoneurons derived from ALS patients, suggesting similar mechanisms may potentially be involved in the pathophysiology of the disease. CONCLUSIONS: Our results help to unveil the physiological role of TDP-43 in skeletal muscles as well as the mechanisms responsible for the autonomous and non-autonomous behavior of this protein concerning the organization of neuromuscular synapses.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Sinapses/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Humanos
4.
PLoS Genet ; 11(6): e1005260, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26110638

RESUMO

Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Telômero/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Replicação do DNA , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleotídeo Único , Antígeno Nuclear de Célula em Proliferação/metabolismo , Telômero/metabolismo , Cromossomo Y/genética , Cromossomo Y/metabolismo
5.
Cell Death Discov ; 9(1): 357, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758732

RESUMO

Aging progressively modifies the physiological balance of the organism increasing susceptibility to both genetic and sporadic neurodegenerative diseases. These changes include epigenetic chromatin remodeling events that may modify the transcription levels of disease-causing genes affecting neuronal survival. However, how these events interconnect is not well understood. Here, we found that Su(var)3-9 causes increased methylation of histone H3K9 in the promoter region of TDP-43, the most frequently altered factor in amyotrophic lateral sclerosis (ALS), affecting the mRNA and protein expression levels of this gene through epigenetic modifications that appear to be conserved in aged Drosophila brains, mouse, and human cells. Remarkably, augmented Su(var)3-9 activity causes a decrease in TDP-43 expression followed by early defects in locomotor activities. In contrast, decreasing Su(var)3-9 action promotes higher levels of TDP-43 expression, improving motility parameters in old flies. The data uncover a novel role of this enzyme in regulating TDP-43 expression and locomotor senescence and indicate conserved epigenetic mechanisms that may play a role in the pathogenesis of ALS.

6.
Bio Protoc ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35937931

RESUMO

Senescence-associated beta-galactosidase (SA-ß-GAL) is an enzyme that accumulates in the lysosomes of senescent cells, where it hydrolyses ß-galactosides. With p16, it represents a well-recognized biomarker used to assess senescence both in vivo and in cell culture. The use of a chromogenic substrate, such as 5-bromo-4-chloro-3-indoyl-ß-d-galactopyranoside (X-Gal), allows the detection of SA-ß-GAL activity at pH 6.0 by the release of a visible blue product. Senescence occurs during aging and is part of the aging process itself. We have shown that prematurely aged zebrafish accumulate senescent cells detectable by SA-ß-GAL staining in different tissues, including testis and gut. Here, we report a detailed protocol to perform an SA-ß-GAL assay to detect senescent cell accumulation across the entire adult zebrafish organism ( Danio rerio ). We also identify previously unreported organs that show increased cell senescence in telomerase mutants, including the liver and the spinal cord.

7.
Cell Rep ; 41(12): 111861, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543136

RESUMO

Striated muscle is a highly organized structure composed of well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts. Here, we show how the combined use of spatially resolved transcriptomics and immunofluorescence can bridge this gap by enabling the unbiased identification of such domains and the characterization of their response to external perturbations. Using a spatiotemporal analysis, we follow changes in the transcriptome of specific domains in muscle in a model of denervation. Furthermore, our approach enables us to identify the spatial distribution and nerve dependence of atrophic signaling pathway and polyamine metabolism to glycolytic fibers. Indeed, we demonstrate that perturbations of polyamine pathway can affect muscle function. Our dataset serves as a resource for future studies of the mechanisms underlying skeletal muscle homeostasis and innervation.


Assuntos
Atrofia Muscular , Transcriptoma , Humanos , Atrofia Muscular/metabolismo , Transcriptoma/genética , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Poliaminas/metabolismo
8.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34517941

RESUMO

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Atividade Motora/genética , Atividade Motora/fisiologia , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Regulação para Baixo/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Biossíntese de Proteínas , Putrescina/farmacologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Espermidina/farmacologia
9.
Elife ; 92020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427102

RESUMO

Progressive telomere shortening during lifespan is associated with restriction of cell proliferation, genome instability and aging. Apoptosis and senescence are the two major outcomes upon irreversible cellular damage. Here, we show a transition of these two cell fates during aging of telomerase deficient zebrafish. In young telomerase mutants, proliferative tissues exhibit DNA damage and p53-dependent apoptosis, but no senescence. However, these tissues in older animals display loss of cellularity and senescence becomes predominant. Tissue alterations are accompanied by a pro-proliferative stimulus mediated by AKT signaling. Upon AKT activation, FoxO transcription factors are phosphorylated and translocated out of the nucleus. This results in reduced SOD2 expression causing an increase of ROS and mitochondrial dysfunction. These alterations induce p15/16 growth arrest and senescence. We propose that, upon telomere shortening, early apoptosis leads to cell depletion and insufficient compensatory proliferation. Following tissue damage, the mTOR/AKT is activated causing mitochondrial dysfunction and p15/16-dependent senescence.


Assuntos
Apoptose/genética , Senescência Celular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Encurtamento do Telômero/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Envelhecimento , Animais , Proliferação de Células , Dano ao DNA , Feminino , Masculino , Mitocôndrias , Mutação , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Peixe-Zebra/fisiologia
10.
Aging Cell ; 17(4): e12778, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29806171

RESUMO

Stress and low socioeconomic status in humans confer increased vulnerability to morbidity and mortality. However, this association is not mechanistically understood nor has its causation been explored in animal models thus far. Recently, cellular senescence has been suggested as a potential mechanism linking lifelong stress to age-related diseases and shorter life expectancy in humans. Here, we established a causal role for lifelong social stress on shortening lifespan and increasing the risk of cardiovascular disease in mice. Specifically, we developed a lifelong chronic psychosocial stress model in which male mouse aggressive behavior is used to study the impact of negative social confrontations on healthspan and lifespan. C57BL/6J mice identified through unbiased cluster analysis for receiving high while exhibiting low aggression, or identified as subordinate based on an ethologic criterion, had lower median and maximal lifespan, and developed earlier onset of several organ pathologies in the presence of a cellular senescence signature. Critically, subordinate mice developed spontaneous early-stage atherosclerotic lesions of the aortic sinuses characterized by significant immune cells infiltration and sporadic rupture and calcification, none of which was found in dominant subjects. In conclusion, we present here the first rodent model to study and mechanistically dissect the impact of chronic stress on lifespan and disease of aging. These data highlight a conserved role for social stress and low social status on shortening lifespan and increasing the risk of cardiovascular disease in mammals and identify a potential mechanistic link for this complex phenomenon.


Assuntos
Longevidade , Estresse Psicológico , Animais , Senescência Celular , Corticosterona/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
11.
Genetics ; 207(4): 1457-1472, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29046402

RESUMO

Crosses between Drosophila melanogaster females and Drosophila simulans males produce hybrid sons that die at the larval stage. This hybrid lethality is suppressed by loss-of-function mutations in the D. melanogaster Hybrid male rescue (Hmr) or in the D. simulans Lethal hybrid rescue (Lhr) genes. Previous studies have shown that Hmr and Lhr interact with heterochromatin proteins and suppress expression of transposable elements within D. melanogaster It also has been proposed that Hmr and Lhr function at the centromere. We examined mitotic divisions in larval brains from Hmr and Lhr single mutants and Hmr; Lhr double mutants in D. melanogaster In none of the mutants did we observe defects in metaphase chromosome alignment or hyperploid cells, which are hallmarks of centromere or kinetochore dysfunction. In addition, we found that Hmr-HA and Lhr-HA do not colocalize with centromeres either during interphase or mitotic division. However, all mutants displayed anaphase bridges and chromosome aberrations resulting from the breakage of these bridges, predominantly at the euchromatin-heterochromatin junction. The few dividing cells present in hybrid males showed fuzzy and irregularly condensed chromosomes with unresolved sister chromatids. Despite this defect in condensation, chromosomes in hybrids managed to align on the metaphase plate and undergo anaphase. We conclude that there is no evidence for a centromeric function of Hmr and Lhr within D. melanogaster nor for a centromere defect causing hybrid lethality. Instead, we find that Hmr and Lhr are required in D. melanogaster for detachment of sister chromatids during anaphase.


Assuntos
Anáfase/genética , Cromátides/genética , Proteínas de Drosophila/genética , Animais , Centrômero/genética , Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Feminino , Genes Letais/genética , Heterocromatina/genética , Hibridização Genética , Larva , Masculino , Troca de Cromátide Irmã/genética , Cromossomo X/genética
12.
Fly (Austin) ; 9(3): 121-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26786804

RESUMO

Drosophila telomeres are maintained by transposition to chromosome ends of the HeT-A, TART and TAHRE retrotransposons, collectively designated as HTT. Although all Drosophila telomeres terminate with HTT arrays and are capped by the terminin complex, they differ in the type of subtelomeric chromatin. The HTT sequences of YS, YL, XR, and 4L are juxtaposed to constitutive heterochromatin, while the HTTs of the other telomeres are linked to either the TAS repeat-associated chromatin (XL, 2L, 2R, 3L, 3R) or to the specialized 4R chromatin. We found that mutations in pendolino (peo) cause (telomeric fusions) that preferentially involve the heterochromatin-associated telomeres (Ha-telomeres), a telomeric fusion pattern never observed in the other 10 telomere-capping mutants characterized so far. Peo, is homologous to the E2 variant ubiquitin-conjugating enzymes and is required for DNA replication. Our analyses lead us to hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in Ha-telomeres. These data provide the first demonstration that subtelomeres can affect telomere fusion.


Assuntos
Cromatina/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/genética , Proteínas Nucleares/fisiologia , Telômero/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Cromatina/metabolismo , Replicação do DNA , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Retroelementos/fisiologia , Telômero/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA