RESUMO
Seasonal changes in disease activity have been observed in multiple sclerosis, an autoimmune disorder that affects the CNS. These epidemiological observations suggest that environmental factors influence the disease course. Here, we report that melatonin levels, whose production is modulated by seasonal variations in night length, negatively correlate with multiple sclerosis activity in humans. Treatment with melatonin ameliorates disease in an experimental model of multiple sclerosis and directly interferes with the differentiation of human and mouse T cells. Melatonin induces the expression of the repressor transcription factor Nfil3, blocking the differentiation of pathogenic Th17 cells and boosts the generation of protective Tr1 cells via Erk1/2 and the transactivation of the IL-10 promoter by ROR-α. These results suggest that melatonin is another example of how environmental-driven cues can impact T cell differentiation and have implications for autoimmune disorders such as multiple sclerosis.
Assuntos
Melatonina/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Luz , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Recidiva , Estações do Ano , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismoRESUMO
The clinical benefit conferred by vascular endothelial growth factors (VEGF)-targeted therapies is variable, and tumors from treated patients eventually reinitiate growth. Here, we identify a glycosylation-dependent pathway that compensates for the absence of cognate ligand and preserves angiogenesis in response to VEGF blockade. Remodeling of the endothelial cell (EC) surface glycome selectively regulated binding of galectin-1 (Gal1), which upon recognition of complex N-glycans on VEGFR2, activated VEGF-like signaling. Vessels within anti-VEGF-sensitive tumors exhibited high levels of α2-6-linked sialic acid, which prevented Gal1 binding. In contrast, anti-VEGF refractory tumors secreted increased Gal1 and their associated vasculature displayed glycosylation patterns that facilitated Gal1-EC interactions. Interruption of ß1-6GlcNAc branching in ECs or silencing of tumor-derived Gal1 converted refractory into anti-VEGF-sensitive tumors, whereas elimination of α2-6-linked sialic acid conferred resistance to anti-VEGF. Disruption of the Gal1-N-glycan axis promoted vascular remodeling, immune cell influx and tumor growth inhibition. Thus, targeting glycosylation-dependent lectin-receptor interactions may increase the efficacy of anti-VEGF treatment.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Células Endoteliais/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Glicosilação , Humanos , Hipóxia , Camundongos , Receptores Mitogênicos/metabolismoRESUMO
Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)1-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity2. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation. Here we describe an integrated systems approach, combining publicly available databases, zebrafish chemical screens, machine learning and mouse preclinical models to identify environmental factors that control intestinal inflammation. This approach established that the herbicide propyzamide increases inflammation in the small and large intestine. Moreover, we show that an AHR-NF-κB-C/EBPß signalling axis operates in T cells and dendritic cells to promote intestinal inflammation, and is targeted by propyzamide. In conclusion, we developed a pipeline for the identification of environmental factors and mechanisms of pathogenesis in IBD and, potentially, other inflammatory diseases.
Assuntos
Meio Ambiente , Herbicidas , Inflamação , Doenças Inflamatórias Intestinais , Intestinos , Animais , Camundongos , Inflamação/induzido quimicamente , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Peixe-Zebra , Aprendizado de Máquina , Bases de Dados Factuais , Modelos Animais de Doenças , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/metabolismo , Intestinos/patologia , NF-kappa B , Proteína beta Intensificadora de Ligação a CCAAT , Receptores de Hidrocarboneto Arílico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Herbicidas/efeitos adversosRESUMO
Dendritic cells (DCs) control the balance between effector T cells and regulatory T cells in vivo. Hence, the study of DCs might identify mechanisms of disease pathogenesis and guide new therapeutic approaches for disorders mediated by the immune system. We found that interleukin 27 (IL-27) signaling in mouse DCs limited the generation of effector cells of the TH1 and TH17 subsets of helper T cells and the development of experimental autoimmune encephalomyelitis (EAE). The effects of IL-27 were mediated at least in part through induction of the immunoregulatory molecule CD39 in DCs. IL-27-induced CD39 decreased the extracellular concentration of ATP and downregulated nucleotide-dependent activation of the NLRP3 inflammasome. Finally, therapeutic vaccination with IL-27-conditioned DCs suppressed established relapsing-remitting EAE. Thus, IL-27 signaling in DCs limited pathogenic T cell responses and the development of autoimmunity.
Assuntos
Antígenos CD/genética , Apirase/genética , Autoimunidade , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Interleucina-17/farmacologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Animais , Anticorpos/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Antígenos CD/metabolismo , Apirase/metabolismo , Autoanticorpos/imunologia , Autoimunidade/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/biossíntese , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Camundongos , Camundongos Knockout , Bainha de Mielina/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Interleucina , Transdução de Sinais , Subpopulações de Linfócitos T/citologia , Transcrição Gênica/efeitos dos fármacosRESUMO
Crohn's disease (CD) is a subtype of inflammatory bowel disease (IBD) characterized by transmural disease. The concept of transmural healing (TH) has been proposed as an indicator of deep clinical remission of CD and as a predictor of favorable treatment endpoints. Understanding the pathophysiology involved in transmural disease is critical to achieving these endpoints. However, most studies have focused on the intestinal mucosa, overlooking the contribution of the intestinal wall in Crohn's disease. Multi-omics approaches have provided new avenues for exploring the pathogenesis of Crohn's disease and identifying potential biomarkers. We aimed to use transcriptomic and proteomic technologies to compare immune and mesenchymal cell profiles and pathways in the mucosal and submucosa/wall compartments to better understand chronic refractory disease elements to achieve transmural healing. The results revealed similarities and differences in gene and protein expression profiles, metabolic mechanisms, and immune and non-immune pathways between these two compartments. Additionally, the identification of protein isoforms highlights the complex molecular mechanisms underlying this disease, such as decreased RTN4 isoforms (RTN4B2 and RTN4C) in the submucosa/wall, which may be related to the dysregulation of enteric neural processes. These findings have the potential to inform the development of novel therapeutic strategies to achieve TH.
Assuntos
Colo , Doença de Crohn , Mucosa Intestinal , Proteômica , Humanos , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Doença de Crohn/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteômica/métodos , Colo/metabolismo , Colo/patologia , Transcriptoma , Masculino , Feminino , Adulto , Perfilação da Expressão Gênica , Biomarcadores , Pessoa de Meia-Idade , MultiômicaRESUMO
Intact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type (WT) CD4(+) T cell transfer, Rag2(-/-)Il10rb(-/-) mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone-marrow-derived macrophages and their ability to secrete IL-10. Importantly, transfer of WT but not Il10rb(-/-) anti-inflammatory macrophages ameliorated colitis induction by WT CD4(+) T cells in Rag2(-/-)Il10rb(-/-) mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.
Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Interleucina-10/imunologia , Receptores de Interleucina-10/imunologia , Transferência Adotiva , Animais , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-10/deficiência , Receptores de Interleucina-10/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologiaRESUMO
Inflammation-mediated neurodegeneration occurs in the acute and the chronic phases of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Classically activated (M1) microglia are key players mediating this process. Here, we identified Galectin-1 (Gal1), an endogenous glycan-binding protein, as a pivotal regulator of M1 microglial activation that targets the activation of p38MAPK-, CREB-, and NF-κB-dependent signaling pathways and hierarchically suppresses downstream proinflammatory mediators, such as iNOS, TNF, and CCL2. Gal1 bound to core 2 O-glycans on CD45, favoring retention of this glycoprotein on the microglial cell surface and augmenting its phosphatase activity and inhibitory function. Gal1 was highly expressed in the acute phase of EAE, and its targeted deletion resulted in pronounced inflammation-induced neurodegeneration. Adoptive transfer of Gal1-secreting astrocytes or administration of recombinant Gal1 suppressed EAE through mechanisms involving microglial deactivation. Thus, Gal1-glycan interactions are essential in tempering microglial activation, brain inflammation, and neurodegeneration, with critical therapeutic implications for MS.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Galectina 1/imunologia , Antígenos Comuns de Leucócito/metabolismo , Microglia/imunologia , Animais , Astrócitos/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Quimiocina CCL2/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/terapia , Feminino , Galectina 1/metabolismo , Galectina 1/uso terapêutico , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Interleukin 10 receptor (IL10R)-deficient mice develop spontaneous colitis and, similarly, patients with loss-of-function mutations in IL10R develop severe infant-onset inflammatory bowel disease. Loss of IL10R signaling in mouse and human macrophages is associated with increased production of interleukin 1ß. We demonstrated that innate immune production of IL1ß mediates colitis in IL10R-deficient mice. Transfer of Il1r1-/- CD4+ T cells into Rag1-/-/Il10rb-/- mice reduced the severity of their colitis (compared to mice that received CD4+ T cells that express IL1R), accompanied by decreased production of interferon gamma, tumor necrosis factor-α, and IL17A. In macrophages from mice without disruption of IL10R signaling or from healthy humans (controls), incubation with IL10 reduced canonical activation of the inflammasome and production of IL1ß through transcriptional and post-translational regulation of NLRP3. Lipopolysaccharide and adenosine triphosphate stimulation of macrophages from Il10rb-/- mice or IL10R-deficient patients resulted in increased production of IL1ß. Moreover, in human IL10R-deficient macrophages, lipopolysaccharide stimulation alone triggered IL1ß secretion via non-canonical, caspase 8-dependent activation of the inflammasome. We treated 2 IL10R-deficient patients with severe and treatment-refractory infant-onset inflammatory bowel disease with the IL1-receptor antagonist anakinra. Both patients had marked clinical, endoscopic, and histologic responses after 4-7 weeks. This treatment served as successful bridge to allogeneic hematopoietic stem cell transplantation in 1 patient. Our findings indicate that loss of IL10 signaling leads to intestinal inflammation, at least in part, through increased production of IL1 by innate immune cells, leading to activation of CD4+ T cells. Agents that block IL1 signaling might be used to treat patients with inflammatory bowel disease resulting from IL10R deficiency.
Assuntos
Colite/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Receptores de Interleucina-10/genética , Trifosfato de Adenosina/farmacologia , Adulto , Animais , Antirreumáticos/uso terapêutico , Linfócitos T CD4-Positivos , Caspase 8/metabolismo , Células Cultivadas , Pré-Escolar , Colite/genética , Colite/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Imunidade Inata , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interferon gama/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-10/farmacologia , Subunidade alfa de Receptor de Interleucina-10/genética , Interleucina-17/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Camundongos Knockout , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de Interleucina-10/deficiência , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Myeloid-derived suppressor cells (MDSCs) are key regulatory cells that control inflammation and promote tumor-immune escape. To date, no specific immunomodulatory drug has proven efficacy in targeting the expansion and/or function of these cells in different pathophysiologic settings. In this study, we identified a context-dependent effect of the nonsteroidal anti-inflammatory drug indomethacin (IND) on MDSCs, depending on whether they were derived from tumor microenvironments (TME) or from tumor-free microenvironments (TFME). Treatment of mice bearing the LP07 lung adenocarcinoma with IND inhibited the suppressive activity of splenic MDSCs, which restrained tumor growth through mechanisms involving CD8(+) T cells. The same effect was observed when MDSCs were treated with IND and conditioned media from LP07 tumor cells in vitro. However, in the absence of a tumor context, IND enhanced the intrinsic suppressive function of MDSCs and amplified their protumoral activity. In a model of autoimmune neuroinflammation, IND-treated MDSCs differentiated in TFME attenuated inflammation, whereas IND-treated MDSCs differentiated in TME aggravated clinical symptoms and delayed resolution of the disease. Mechanistically, IND reduced arginase activity as well as NO and reactive oxygen species production in MDSCs differentiated in TME but not in TFME. Moreover, expression of the C/EBP-ß transcription factor isoforms correlated with the suppressive activity of IND-treated MDSCs. Our study unveils the dual and context-dependent action of IND, a drug that serves both as an anti-inflammatory and anticancer agent, which differentially affects MDSC activity whether these cells are derived from TME or TFME. These results have broad clinical implication in cancer, chronic inflammation and autoimmunity.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/imunologia , Indometacina/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Autoimunidade/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Imunofenotipagem , Camundongos , Modelos Biológicos , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Óxido Nítrico/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologiaRESUMO
Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17ß-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17ß-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K-Akt and NF-κB signaling pathways.
Assuntos
Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Hipófise/metabolismo , Neoplasias Hipofisárias/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Hiperplasia/metabolismo , Interleucina-6/metabolismo , Masculino , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipófise/ultraestrutura , Neoplasias Hipofisárias/imunologia , Neoplasias Hipofisárias/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologiaRESUMO
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17ß-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.
Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Adeno-Hipófise , Prolactina/metabolismo , Transdução de Sinais/fisiologia , Hormônio Liberador de Tireotropina/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas de Membrana/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Adeno-Hipófise/citologia , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Soroalbumina Bovina/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Despite considerable progress in our understanding of the interplay between immune and endocrine systems, the role of thyroid hormones and their receptors in the control of adaptive immunity is still uncertain. Here, we investigated the role of thyroid hormone receptor (TR) beta(1) signaling in modulating dendritic cell (DC) physiology and the intracellular mechanisms underlying these immunoregulatory effects. Exposure of DCs to triiodothyronine (T(3)) resulted in a rapid and sustained increase in Akt phosphorylation independently of phosphatidylinositol 3-kinase activation, which was essential for supporting T(3)-induced DC maturation and interleukin (IL)-12 production. This effect was dependent on intact TR beta(1) signaling as small interfering RNA-mediated silencing of TR beta(1) expression prevented T(3)-induced DC maturation and IL-12 secretion as well as Akt activation and I kappaB-epsilon degradation. In turn, T(3) up-regulated TR beta(1) expression through mechanisms involving NF-kappaB, suggesting an autocrine regulatory loop to control hormone-dependent TR beta(1) signaling. These findings were confirmed by chromatin immunoprecipitation analysis, which disclosed a new functional NF-kappaB consensus site in the promoter region of the TRB1 gene. Thus, a T(3)-induced NF-kappaB-dependent mechanism controls TR beta(1) expression, which in turn signals DCs to promote maturation and function via an Akt-dependent but PI3K-independent pathway. These results underscore a novel unrecognized target that regulates DC maturation and function with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits.
Assuntos
Regulação da Expressão Gênica , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Células Dendríticas/metabolismo , Ativação Enzimática , Feminino , Immunoblotting , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Tri-Iodotironina/metabolismoRESUMO
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Assuntos
Citocinas/imunologia , Galectinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Polissacarídeos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Citocinas/metabolismo , Galectinas/metabolismo , Humanos , Polissacarídeos/metabolismoRESUMO
OBJECTIVE: Idiopathic short stature (ISS) describes short children with normal GH secretion. Although GH treatment increases their heights, growth response to the therapy differs among patients. Thyroid hormones (TH) are essential for longitudinal growth acting mainly through TH receptors (TR) α and ß. We have previously reported that GH treatment reduced peripheral TH action in Turner Syndrome by TR down-regulation. The aims of the study were to assess the effect of GH treatment to ISS on peripheral TH action and the correlation between thyroid status and growth response to the therapy. SUBJECTS, DESIGN AND MEASUREMENTS: Eighteen normal (control) and twenty-five ISS children were enrolled and evaluated before and after 12 months of life time (control) or 12 months of GH therapy (ISS). Fasting blood was used for serum biochemical evaluations, peripheral blood mononuclear cells for TR mRNA determination by QRT-PCR and growth parameters by standard methods. RESULTS: GH treatment modified neither TR mRNA levels nor serum markers of TH action in ISS evaluated as a whole group. However, the individual change in TRß mRNA levels correlated to the change in sex hormone-binding globulin (SHBG) levels after GH therapy. The growth response to GH correlated positively with the change in TRα mRNA level and negatively with that in TRß mRNA, TSH and SHBG levels. The change in each TR mRNA isoform after GH treatment correlated negatively with its own basal level. CONCLUSIONS: GH therapy induced individual changes in TR expression in ISS that correlated with their growth response. The basal TR mRNA level could predetermine the change in TR expression and therefore the sensitivity to GH treatment.
Assuntos
Transtornos do Crescimento/sangue , Transtornos do Crescimento/tratamento farmacológico , Hormônio do Crescimento Humano/uso terapêutico , Criança , Transtornos do Crescimento/genética , Humanos , Imunoensaio/métodos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Osteocalcina/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Globulina de Ligação a Hormônio Sexual/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos/sangue , Tireotropina/sangue , Fatores de Tempo , Resultado do TratamentoRESUMO
Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases. KEY MESSAGES: MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425. Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells. Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425. Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Indóis/administração & dosagem , Maleimidas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Transplante Heterólogo/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/imunologia , Inibidores Enzimáticos/sangue , Feminino , Humanos , Imunidade/efeitos dos fármacos , Indóis/sangue , Maleimidas/sangue , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Distribuição Tecidual , Resultado do TratamentoRESUMO
Accumulating evidence indicates a functional crosstalk between immune and endocrine mechanisms in the modulation of innate and adaptive immunity. However, the impact of thyroid hormones (THs) in the initiation of adaptive immune responses has not yet been examined. Here we investigated the presence of thyroid hormone receptors (TRs) and the impact of THs in the physiology of mouse dendritic cells (DCs), specialized antigen-presenting cells with the unique capacity to fully activate naive T cells and orchestrate adaptive immunity. Both immature and lipopolysaccharide-matured bone marrow-derived DCs expressed TRs at mRNA and protein levels, showing a preferential cytoplasmic localization. Remarkably, physiological levels of triiodothyronine (T3) stimulated the expression of DC maturation markers (major histocompatibility complex II, CD80, CD86, and CD40), markedly increased the secretion of interleukin-12, and stimulated the ability of DCs to induce naive T cell proliferation and IFN-gamma production in allogeneic T cell cultures. Analysis of the mechanisms involved in these effects revealed the ability of T3 to influence the cytoplasmic-nuclear shuttling of nuclear factor-kappaB on primed DCs. Our study provides the first evidence for the presence of TRs on bone marrow-derived DCs and the ability of THs to regulate DC maturation and function. These results have profound implications in immunopathology, including cancer and autoimmune manifestations of the thyroid gland at the crossroads of the immune and endocrine systems.
Assuntos
Células Dendríticas/imunologia , Tri-Iodotironina/farmacologia , Animais , Células da Medula Óssea/citologia , Células COS , Diferenciação Celular , Chlorocebus aethiops , Citosol/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Citometria de Fluxo , Interleucina-12/imunologia , Camundongos , Receptores dos Hormônios Tireóideos/análise , Receptores dos Hormônios Tireóideos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , TransfecçãoRESUMO
In the version of this article initially published, author Alexandre Prat's surname was misspelled. The error has been corrected in the HTML and PDF versions of the article.
RESUMO
Tumor-associated macrophages (TAMs) play an important role in the immune response to cancer, but the mechanisms by which the tumor microenvironment controls TAMs and T cell immunity are not completely understood. Here we report that kynurenine produced by glioblastoma cells activates aryl hydrocarbon receptor (AHR) in TAMs to modulate their function and T cell immunity. AHR promotes CCR2 expression, driving TAM recruitment in response to CCL2. AHR also drives the expression of KLF4 and suppresses NF-κB activation in TAMs. Finally, AHR drives the expression of the ectonucleotidase CD39 in TAMs, which promotes CD8+ T cell dysfunction by producing adenosine in cooperation with CD73. In humans, the expression of AHR and CD39 was highest in grade 4 glioma, and high AHR expression was associated with poor prognosis. In summary, AHR and CD39 expressed in TAMs participate in the regulation of the immune response in glioblastoma and constitute potential targets for immunotherapy.
Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Cinurenina/metabolismo , Macrófagos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Glioblastoma/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Receptores de Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Fator de Transcrição STAT1 , Fator de Transcrição STAT3/metabolismo , Linfócitos T/imunologia , Microambiente TumoralRESUMO
Nitric oxide (NO) is a free radical that mediates a wide array of cell functions. It is generated from l-arginine by NO-synthase (NOS). Expression of NOS isoforms has been demonstrated in thyroid cells. Previous reports indicated that NO donors induce dedifferentiation in thyrocytes. However, the functional significance of endogenous thyrocyte-produced NO has not been explored. This work aimed to study the influence of endogenous NO on parameters of thyroid cell function and differentiation in FRTL-5 cells. We observed that treatment with the NOS inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), increased the TSH-stimulated iodide uptake. The TSH-induced sodium iodide symporter (NIS) and thyroglobulin (TG) mRNA expressions were increased after incubation with L-NAME. In transient transfection assays, TSH-stimulated transcriptional activities of NIS and TG promoters were increased by L-NAME. An increment of the TSH-stimulated cell proliferation was observed after NOS inhibition. Similar results were obtained when the action of another NOS inhibitor, N(g)-monomethyl-L-arginine, was analysed for most of these studies. The production of NO, which was not detectable in basal conditions, was increased by TSH. Our data provide strong evidence that endogenous NO could act as a negative signal for TSH-stimulated iodide uptake and thyroid-specific gene expression as well as proliferation in thyrocytes. These findings reveal a possible new inhibitory pathway in the regulation of thyroid cell function.
Assuntos
Iodetos/metabolismo , Óxido Nítrico/metabolismo , Glândula Tireoide/metabolismo , Animais , Northern Blotting , Carbazóis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Indóis/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/análise , Óxido Nítrico Sintase/antagonistas & inibidores , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/genética , Simportadores/metabolismo , Tireoglobulina/genética , Tireoglobulina/metabolismo , Tireotropina/farmacologia , Transfecção/métodosRESUMO
Type 1 diabetes (T1D) is a T cell-dependent autoimmune disease that is characterized by the destruction of insulin-producing ß cells in the pancreas. The administration to patients of ex vivo-differentiated FoxP3(+) regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the ß cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3(+) Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders.