Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genetics ; 95(4): 985-1000, 1980 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17249057

RESUMO

A chimeric plant was observed in the F(2) generation of a cross between a male-sterile line and a plant introduction homozygous for a chromosome interchange in soybeans [Glycine max (L.) Merr.]. F(3) progeny of this plant included one chimera, 36 yellow plants and 16 green plants. The yellow plants, which progressively turn green, were viable and fertile in field, greenhouse and growth-chamber environments. Reciprocal cross-pollinations were made between these yellow plants and four known nuclear yellow mutant plants, between these yellow plants and sibling green plants and between these yellow plants and unrelated green plants. Segregation data from F(1) and F(2) generations indicated cytoplasmic inheritance of the newly discovered yellow phenotype. Pollinations in which reciprocal F(1) hybrid plants were used as male or female parents were made with unrelated green plants. Observations in F(1) and F(2) generations substantiated the hypothesis of cytoplasmic inheritance. No interactions have been observed between this mutant and the various nuclear backgrounds. This is the first report of a cytoplasmically inherited mutant affecting plant color in soybeans. Exchange grafts were made between cytoplasmic yellow plants and sibling green plants and between cytoplasmic yellow plants and unrelated green plants. The phenotype was controlled by the scion, indicating that graft-transmissible agents were not involved. When grown in darkness, cytoplasmic yellow plants and normal green plants accumulated the same amount of protochlorophyllide. Cytoplasmic yellow plants grown in dim light accumulated slightly less chlorophyll than did their green siblings. Electron photomicrographs showed that the prolamellar body (a structure associated with synthesis of protochlorophyllide) and chloroplast ultrastructure were normal in the cytoplasmic yellow mutant. These observations led to the hypothesis that the synchrony involved in deposition of nuclear and cytoplasmic gene products during organelle development is impaired in this cytoplasmic mutant.

4.
Planta ; 143(2): 207-11, 1978 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24408370

RESUMO

Four mutants of maize (Zea mays L.) defective in chlorophyll biosynthesis have been analyzed with regard to the sites of their lesions and their effects on chloroplast development. Two yellow mutants, which accumulate no detectable porphyrin precursors when grown in darkness, are defective in the conversion of protoporphyrin IX to magnesium protoporphyrin. Etioplasts of these mutants may develop elaborate lamellar membrane systems, but prolamellar bodies are never observed. Two mutants, which are necrotic when grown under illumination, develop normal (non-necrotic) leaf tissue in the dark and accumulate a small amount of magnesium protoporphyrin monomethyl ester, corresponding approximately to the amount of protochlorophyllide accumulated by normal plants. The etioplasts of these mutants contain noncrystalline bodies. The implications of these observations with respect to chloroplast development are discussed.

5.
Theor Appl Genet ; 74(3): 334-8, 1987 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24241670

RESUMO

Anther-culture response was examined among three spring wheat (Triticum aestivum L.) cultivars to evaluate the genetic component of response and to determine whether androgenetic performance could be improved by selection. The three lines, the three possible F1's among the three lines, their F2's, and the backcrosses to the parents were evaluated for callus production and regeneration capacity. Significant variation was observed among the generations of the three crosses for callus formation. Genetic variation for regenerability was nonsignificant. Callus production was negatively correlated (-0.24) with regeneration capacity. The random variation in the study was too great to determine whether major-gene differences for antherculture response exist among the three lines by examining population distributions. When the material was evaluated for quantitative gene effects, the estimates for the additive gene effects were generally greater than the estimates for the dominance gene effects for callus formation. Only the Pavon x Chris cross, however, exhibited a significant narrow sense heritability estimate for callusing response (0.94). Due to the large component of random variation and the varying selection potential among crosses for androgenetic performance, improving anther-culture response in wheat by selection could prove difficult unless the anther-culture process itself selects for response traits at the gametic level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA