Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 20(1): 143, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875916

RESUMO

BACKGROUND: Learning of a visuomotor task not only leads to changes in motor performance but also improves proprioceptive function of the trained joint/limb system. Such sensorimotor learning may show intra-joint transfer that is observable at a previously untrained degrees of freedom of the trained joint. OBJECTIVE: Here, we examined if and to what extent such learning transfers to neighboring joints of the same limb and whether such transfer is observable in the motor as well as in the proprioceptive domain. Documenting such intra-limb transfer of sensorimotor learning holds promise for the neurorehabilitation of an impaired joint by training the neighboring joints. METHODS: Using a robotic exoskeleton, 15 healthy young adults (18-35 years) underwent a visuomotor training that required them to make continuous, increasingly precise, small amplitude wrist movements. Wrist and elbow position sense just-noticeable-difference (JND) thresholds and spatial movement accuracy error (MAE) at wrist and elbow in an untrained pointing task were assessed before and immediately after, as well as 24 h after training. RESULTS: First, all participants showed evidence of proprioceptive and motor learning in both trained and untrained joints. The mean JND threshold decreased significantly by 30% in trained wrist (M: 1.26° to 0.88°) and by 35% in untrained elbow (M: 1.96° to 1.28°). Second, mean MAE in untrained pointing task reduced by 20% in trained wrist and the untrained elbow. Third, after 24 h the gains in proprioceptive learning persisted at both joints, while transferred motor learning gains had decayed to such extent that they were no longer significant at the group level. CONCLUSION: Our findings document that a one-time sensorimotor training induces rapid learning gains in proprioceptive acuity and untrained sensorimotor performance at the practiced joint. Importantly, these gains transfer almost fully to the neighboring, proximal joint/limb system.


Assuntos
Robótica , Punho , Adulto Jovem , Humanos , Cotovelo , Extremidade Superior , Propriocepção
2.
Sensors (Basel) ; 22(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890748

RESUMO

Haptic feedback is the sensory modality to enhance the so-called "immersion", meant as the extent to which senses are engaged by the mediated environment during virtual reality applications. However, it can be challenging to meet this requirement using conventional robotic design approaches that rely on rigid mechanical systems with limited workspace and bandwidth. An alternative solution can be seen in the adoption of lightweight wearable systems equipped with Neuromuscular Electrical Stimulation (NMES): in fact, NMES offers a wide range of different forces and qualities of haptic feedback. In this study, we present an experimental setup able to enrich the virtual reality experience by employing NMES to create in the antagonists' muscles the haptic sensation of being loaded. We developed a subject-specific biomechanical model that estimated elbow torque during object lifting to deliver suitable electrical muscle stimulations. We experimentally tested our system by exploring the differences between the implemented NMES-based haptic feedback (NMES condition), a physical lifted object (Physical condition), and a condition without haptic feedback (Visual condition) in terms of kinematic response, metabolic effort, and participants' perception of fatigue. Our results showed that both in terms of metabolic consumption and user fatigue perception, the condition with electrical stimulation and the condition with the real weight differed significantly from the condition without any load: the implemented feedback was able to faithfully reproduce interactions with objects, suggesting its possible application in different areas such as gaming, work risk assessment simulation, and education.


Assuntos
Fadiga , Tecnologia Háptica , Estimulação Elétrica , Desenho de Equipamento , Retroalimentação , Humanos , Interface Usuário-Computador
3.
J Neuroeng Rehabil ; 18(1): 130, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465356

RESUMO

BACKGROUND: In recent years, many studies focused on the use of robotic devices for both the assessment and the neuro-motor reeducation of upper limb in subjects after stroke, spinal cord injuries or affected by neurological disorders. Contrarily, it is still hard to find examples of robot-aided assessment and rehabilitation after traumatic injuries in the orthopedic field. However, those benefits related to the use of robotic devices are expected also in orthopedic functional reeducation. METHODS: After a wrist injury occurred at their workplace, wrist functionality of twenty-three subjects was evaluated through a robot-based assessment and clinical measures (Patient Rated Wrist Evaluation, Jebsen-Taylor and Jamar Test), before and after a 3-week long rehabilitative treatment. Subjects were randomized in two groups: while the control group (n = 13) underwent a traditional rehabilitative protocol, the experimental group (n = 10) was treated replacing traditional exercises with robot-aided ones. RESULTS: Functionality, assessed through the function subscale of PRWE scale, improved in both groups (experimental p = 0.016; control p < 0.001) and was comparable between groups, both pre (U = 45.5, p = 0.355) and post (U = 47, p = 0.597) treatment. Additionally, even though groups' performance during the robotic assessment was comparable before the treatment (U = 36, p = 0.077), after rehabilitation the experimental group presented better results than the control one (U = 26, p = 0.015). CONCLUSIONS: This work can be considered a starting point for introducing the use of robotic devices in the orthopedic field. The robot-aided rehabilitative treatment was effective and comparable to the traditional one. Preserving efficacy and safety conditions, a systematic use of these devices could lead to decrease human therapists' effort, increase repeatability and accuracy of assessments, and promote subject's engagement and voluntary participation. Trial Registration ClinicalTrial.gov ID: NCT04739644. Registered on February 4, 2021-Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/study/NCT04739644 .


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Extremidade Superior , Punho , Articulação do Punho
4.
J Neuroeng Rehabil ; 18(1): 77, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971912

RESUMO

BACKGROUND: Proprioceptive deficits after stroke are associated with poor upper limb function, slower motor recovery, and decreased self-care ability. Improving proprioception should enhance motor control in stroke survivors, but current evidence is inconclusive. Thus, this study examined whether a robot-aided somatosensory-based training requiring increasingly accurate active wrist movements improves proprioceptive acuity as well as motor performance in chronic stroke. METHODS: Twelve adults with chronic stroke completed a 2-day training (age range: 42-74 years; median time-after-stroke: 12 months; median Fugl-Meyer UE: 65). Retention was assessed at Day 5. Grasping the handle of a wrist-robotic exoskeleton, participants trained to roll a virtual ball to a target through continuous wrist adduction/abduction movements. During training vision was occluded, but participants received real-time, vibro-tactile feedback on their forearm about ball position and speed. Primary outcome was the just-noticeable-difference (JND) wrist position sense threshold as a measure of proprioceptive acuity. Secondary outcomes were spatial error in an untrained wrist tracing task and somatosensory-evoked potentials (SEP) as a neural correlate of proprioceptive function. Ten neurologically-intact adults were recruited to serve as non-stroke controls for matched age, gender and hand dominance (age range: 44 to 79 years; 6 women, 4 men). RESULTS: Participants significantly reduced JND thresholds at posttest and retention (Stroke group: pretest: mean: 1.77° [SD: 0.54°] to posttest mean: 1.38° [0.34°]; Control group: 1.50° [0.46°] to posttest mean: 1.45° [SD: 0.54°]; F[2,37] = 4.54, p = 0.017, ηp2 = 0.20) in both groups. A higher pretest JND threshold was associated with a higher threshold reduction at posttest and retention (r = - 0.86, - 0.90, p ≤ 0.001) among the stroke participants. Error in the untrained tracing task was reduced by 22 % at posttest, yielding an effect size of w = 0.13. Stroke participants exhibited significantly reduced P27-N30 peak-to-peak SEP amplitude at pretest (U = 11, p = 0.03) compared to the non-stroke group. SEP measures did not change systematically with training. CONCLUSIONS: This study provides proof-of-concept that non-visual, proprioceptive training can induce fast, measurable improvements in proprioceptive function in chronic stroke survivors. There is encouraging but inconclusive evidence that such somatosensory learning transfers to untrained motor tasks. Trial registration Clinicaltrials.gov; Registration ID: NCT02565407; Date of registration: 01/10/2015; URL: https://clinicaltrials.gov/ct2/show/NCT02565407 .


Assuntos
Exoesqueleto Energizado , Desempenho Psicomotor/fisiologia , Transtornos de Sensação/reabilitação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Propriocepção/fisiologia , Robótica , Transtornos de Sensação/etiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Sobreviventes , Articulação do Punho/fisiopatologia
5.
J Neuroeng Rehabil ; 16(1): 29, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30791919

RESUMO

BACKGROUND: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement. METHODS: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue. RESULTS: Powered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20±5.58% (mean ± standard error) of the biological torque and 64.8±7.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue. CONCLUSIONS: The study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount.


Assuntos
Braço/fisiologia , Exoesqueleto Energizado , Movimento/fisiologia , Robótica , Adulto , Fenômenos Biomecânicos , Cotovelo/fisiologia , Eletromiografia , Feminino , Músculos Isquiossurais/fisiologia , Humanos , Contração Isométrica , Masculino , Fadiga Muscular/fisiologia , Desenho de Prótese , Tecnologia Assistiva , Torque , Dispositivos Eletrônicos Vestíveis
6.
Eur J Neurosci ; 45(11): 1473-1484, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28444787

RESUMO

In this study, we recorded the pressure exerted onto an object by the index finger and the thumb of the preferred hand of 18 human subjects and either hand of two macaque monkeys during a precision grasping task. The to-be-grasped object was a custom-made device composed by two plates which could be variably oriented by a motorized system while keeping constant the size and thus grip dimension. The to-be-grasped plates were covered by an array of capacitive sensors to measure specific features of finger adaptation, namely pressure intensity and centroid location and displacement. Kinematic measurements demonstrated that for human subjects and for monkeys, different plate configurations did not affect wrist velocity and grip aperture during the reaching phase. Consistently, at the instant of fingers-plates contact, pressure centroids were clustered around the same point for all handle configurations. However, small pressure centroid displacements were specifically adopted for each configuration, indicating that both humans and monkeys can display finger adaptation during precision grip. Moreover, humans applied stronger thumb pressure intensity, performed less centroid displacement and required reduced adjustment time, as compared to monkeys. These pressure patterns remain similar when different load forces were required to pull the handle, as ascertained by additional measurements in humans. The present findings indicate that, although humans and monkeys share common features in motor control of grasping, they differ in the adjustment of fingertip pressure, probably because of skill and/or morphology divergences. Such a precision grip device may form the groundwork for future studies on prehension mechanisms.


Assuntos
Dedos/fisiologia , Força de Pinça , Adulto , Animais , Fenômenos Biomecânicos , Feminino , Dedos/inervação , Humanos , Macaca fascicularis , Masculino , Destreza Motora , Percepção do Tato
7.
J Neuroeng Rehabil ; 14(1): 3, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28069028

RESUMO

BACKGROUND: Several neurodevelopmental disorders and brain injuries in children have been associated with proprioceptive dysfunction that will negatively affect their movement. Unfortunately, there is lack of reliable and objective clinical examination protocols and our current knowledge of how proprioception evolves in typically developing children is still sparse. METHODS: Using a robotic exoskeleton, we investigated proprioceptive acuity of the wrist in a group of 49 typically developing healthy children (8-15 years), and a group of 40 young adults. Without vision participants performed an ipsilateral wrist joint position matching task that required them to reproduce (match) a previously experienced target position. All three joint degrees-of-freedom of the wrist/hand complex were assessed. Accuracy and precision were evaluated as a measure of proprioceptive acuity. The cross-sectional data indicating the time course of development of acuity were then fitted by four models in order to determine which function best describes developmental changes in proprioception across age. RESULTS: First, the robot-aided assessment proved to be an easy to administer method for objectively measuring proprioceptive acuity in both children and adult populations. Second, proprioceptive acuity continued to develop throughout middle childhood and early adolescence, improving by more than 50% with respect to the youngest group. Adult levels of performance were reached approximately by the age of 12 years. An inverse-root function best described the development of proprioceptive acuity across the age groups. Third, wrist/forearm proprioception is anisotropic across the three DoFs with the Abduction/Adduction exhibiting a higher level of acuity than those of Flexion/extension and Pronation/Supination. This anisotropy did not change across development. CONCLUSIONS: Proprioceptive development for the wrist continues well into early adolescence. Our normative data obtained trough this novel robot-aided assessment method provide a basis against which proprioceptive function of pediatric population can be compared. This may aid the design of more effective sensorimotor intervention programs.


Assuntos
Propriocepção/fisiologia , Robótica/métodos , Articulação do Punho/fisiologia , Adolescente , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Movimento , Robótica/instrumentação , Adulto Jovem
9.
J Neuroeng Rehabil ; 13(1): 76, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527511

RESUMO

BACKGROUND: Myoelectric signals offer significant insights in interpreting the motion intention and extent of effort involved in performing a movement, with application in prostheses, orthosis and exoskeletons. Feature extraction plays a vital role, and follows two approaches: EMG and synergy features. More recently, muscle synergy based features are being increasingly explored, since it simplifies dimensionality of control, and are considered to be more robust to signal variations. Another important aspect in a myoelectrically controlled devices is the learning capability and speed of performance for online decoding. Extreme learning machine (ELM) is a relatively new neural-network based learning algorithm: its performance hasn't been explored in the context of online control, which is a more reliable measure compared to offline analysis. To this purpose we aim at focusing our investigation on a myoelectric-based interface which is able to identify and online classify, upper limb motions involving shoulder and elbow. The main objective is to compare the performance of the decoder trained using ELM, for two different features: EMG and synergy features. METHODS: The experiments are broadly divided in two phases training/calibration and testing respectively. ELM is used to train the decoder using data acquired during the calibration phase. The performance of the decoder is then tested in online motion control by using a simulated graphical user interface replicating the human limb: subjects are requested to control a virtual arm by using their muscular activity. The decoder performance is quantified using ad-hoc metrics based on the following indicators: motion selection time, motion completion time, and classification accuracy. RESULTS: Performance has been evaluated for both offline and online contexts. The offline classification results indicated better performance in the case of EMG features, whereas a better classification accuracy for synergy feature was observed for online decoding. Also the other indicators as motion selection time and motion completion time, showed better trend in the case of synergy than time-domain features. CONCLUSION: This work demonstrates better robustness of online decoding of upper-limb motions and motor intentions when using synergy feature. Furthermore, we have quantified the performance of the decoder trained using ELM for online control, providing a potential and viable option for real-time myoelectric control in assistive technology.


Assuntos
Eletromiografia/métodos , Aprendizado de Máquina , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Adulto , Feminino , Humanos , Masculino , Movimento/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Extremidade Superior
10.
Soft Robot ; 11(2): 338-346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37870773

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disorder that affects the central nervous system and can result in various symptoms, including muscle weakness, spasticity, and fatigue, ultimately leading to the deterioration of the musculoskeletal system. However, in recent years, exosuits have emerged as a game-changing solution to assist individuals with MS during their daily activities. These lightweight and affordable wearable robotic devices have gained immense popularity. In our study, we assessed the performance of an elbow exosuit on eight individuals with MS using high-density electromyography to measure biceps muscle activity. The results demonstrated that our prototype significantly reduced muscle effort during both dynamic and isometric tasks while increasing the elbow range of motion. In addition, the exosuit effectively delayed the onset of muscle fatigue, enhancing endurance for people with MS and enabling them to perform heavy duty tasks for a longer period.


Assuntos
Esclerose Múltipla , Robótica , Humanos , Extremidade Superior , Braço , Cotovelo
11.
Brain ; 135(Pt 11): 3371-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23169922

RESUMO

This study investigated how Parkinson's disease alters haptic perception and the underlying mechanisms of somatosensory and sensorimotor integration. Changes in haptic sensitivity and acuity (the abilities to detect and to discriminate between haptic stimuli) due to Parkinson's disease were systematically quantified and contrasted to the performance of healthy older and young adults. Using a robotic force environment, virtual contours of various curvatures were presented. Participants explored these contours with their hands and indicated verbally whether they could detect or discriminate between two contours. To understand what aspects of sensory or sensorimotor integration are altered by ageing and disease, we manipulated the sensorimotor aspect of the task: the robot either guided the hand along the contour or the participant actively moved the hand. Active exploration relies on multimodal sensory and sensorimotor integration, while passive guidance only requires sensory integration of proprioceptive and tactile information. The main findings of the study are as follows: first, a decline in haptic precision can already be observed in adults before the age of 70 years. Parkinson's disease may lead to an additional decrease in haptic sensitivity well beyond the levels typically seen in middle-aged and older adults. Second, the haptic deficit in Parkinson's disease is general in nature. It becomes manifest as a decrease in sensitivity and acuity (i.e. a smaller perceivable range and a diminished ability to discriminate between two perceivable haptic stimuli). Third, thresholds during both active and passive exploration are elevated, but not significantly different from each other. That is, active exploration did not enhance the haptic deficit when compared to passive hand motion. This implies that Parkinson's disease affects early stages of somatosensory integration that ultimately have an impact on processes of sensorimotor integration. Our results suggest that the known motor problems in Parkinson's disease that are generally characterized as a failure of sensorimotor integration may, in fact, have a sensory origin.


Assuntos
Envelhecimento/fisiologia , Percepção de Forma/fisiologia , Doença de Parkinson/fisiopatologia , Percepção do Tato/fisiologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor , Robótica/métodos , Limiar Sensorial/fisiologia
12.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941239

RESUMO

The use of portable and lightweight wearable assistive devices can improve wearer locomotion efficiency by reducing the metabolic cost of walking. To achieve this goal, assistive technologies must adapt to different locomotion modes to optimize walking assistance. In this work, we developed a novel control strategy for an underactuated soft exosuit featuring a single actuator to assist bilateral hip flexion, which utilized inertial measurement units (IMUs) to discriminate between three different locomotion modes: walking up/down stairs or on level ground. Walking assistance was adjusted in real-time to maximize the assistance provided to the user. In order to preliminary test the effectiveness of this control strategy, four healthy subjects performed a walking task with the exosuit disabled (Exo Off) and enabled (Exo On). Results showed that the kinematics-based IMU classification strategy achieved an overall accuracy exceeding 95% across the three-movement patterns. Subjects were able to save an average of 10.1% on walking energy expenditure with assistance from the wearable device. This work contributes to the development of compact, high-performance lower limb assistive technologies and their development in practical applications.


Assuntos
Exoesqueleto Energizado , Robótica , Tecnologia Assistiva , Humanos , Caminhada , Extremidade Inferior , Locomoção , Marcha
13.
IEEE Trans Haptics ; 16(2): 296-310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167042

RESUMO

Bimanual object manipulation involves using both hands to interact with objects in the environment, and the process requires the central nervous system to process sensory feedback and translate it into motor commands. Although there have been significant advancements in haptics and robotics, the kinematic strategies involved in bimanual coupled tasks are still not fully understood. This study aimed to investigate the dynamic interaction between hands during the manipulation of a shared object using two impedance-controlled exoskeletons programmed to simulate bimanual coupled manipulation of virtual objects. Twenty-six participants (right-handed and left-handed) were asked to use both hands to grab and place simulated objects in specific locations. The virtual objects were rendered with four different dynamic properties, affecting the manipulation strategies used to complete the tasks. The results showed that force asymmetries were related to movement direction and handedness preference, with right-handers exhibiting asymmetries related to movement direction and left-handers showing better control of the force applied between their hands. This is possibly due to their constant exposure to objects designed for right-handed use. Additionally, the haptic properties of the virtual objects influenced task performance in terms of timing and failure for all participants. This study demonstrates the potential of advanced technologies to provide realistic simulations of multi-joint movements involving the entire upper extremities. The findings have implications for the development of training programs for bimanual object manipulation tasks and the design of virtual environments that can enhance the learning process.


Assuntos
Robótica , Percepção do Tato , Humanos , Lateralidade Funcional/fisiologia , Desempenho Psicomotor/fisiologia , Tecnologia Háptica , Percepção do Tato/fisiologia , Mãos/fisiologia
14.
J Neurophysiol ; 107(2): 544-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031771

RESUMO

Humans routinely use both of their hands to gather information about shape and texture of objects. Yet, the mechanisms of how the brain combines haptic information from the two hands to achieve a unified percept are unclear. This study systematically measured the haptic precision of humans exploring a virtual curved object contour with one or both hands to understand if the brain integrates haptic information from the two hemispheres. Bayesian perception theory predicts that redundant information from both hands should improve haptic estimates. Thus exploring an object with two hands should yield haptic precision that is superior to unimanual exploration. A bimanual robotic manipulandum passively moved the hands of 20 blindfolded, right-handed adult participants along virtual curved contours. Subjects indicated which contour was more "curved" (forced choice) between two stimuli of different curvature. Contours were explored uni- or bimanually at two orientations (toward or away from the body midline). Respective psychophysical discrimination thresholds were computed. First, subjects showed a tendency for one hand to be more sensitive than the other with most of the subjects exhibiting a left-hand bias. Second, bimanual thresholds were mostly within the range of the corresponding unimanual thresholds and were not predicted by a maximum-likelihood estimation (MLE) model. Third, bimanual curvature perception tended to be biased toward the motorically dominant hand, not toward the haptically more sensitive left hand. Two-handed exploration did not necessarily improve haptic sensitivity. We found no evidence that haptic information from both hands is integrated using a MLE mechanism. Rather, results are indicative of a process of "sensory selection", where information from the dominant right hand is used, although the left, nondominant hand may yield more precise haptic estimates.


Assuntos
Encéfalo/fisiologia , Lateralidade Funcional/fisiologia , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Adulto , Análise de Variância , Discriminação Psicológica/fisiologia , Feminino , Percepção de Forma/fisiologia , Humanos , Masculino , Valor Preditivo dos Testes , Psicometria , Adulto Jovem
15.
Exp Brain Res ; 223(1): 149-57, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064882

RESUMO

Neural processes of sensory-motor- and motor-sensory integration link perception and action, forming the basis for human interaction with the environment. Haptic perception, the ability to extract object features through action, is based on these processes. To study the development of motor-sensory integration, children judged the curvature of virtual objects after exploring them actively or while guided passively by a robot. Haptic acuity reached adult levels only at early adolescence. Unlike in adults, haptic precision in children was consistently lower during active exploration when compared to passive motion. Thus, the exploratory movements themselves constitute a form of noise for the developing haptic system that younger brains cannot compensate until mid-adolescence. Computationally, this is consistent with a noisy efference copy mechanism producing imprecise predicted sensory feedback, which compromises haptic precision in children, while the mature mechanism aids the adult brain to account for the effect of self-generated motion on perception.


Assuntos
Percepção de Forma/fisiologia , Lateralidade Funcional/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Envelhecimento/fisiologia , Envelhecimento/psicologia , Algoritmos , Criança , Comportamento Exploratório/fisiologia , Retroalimentação , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Robótica , Interface Usuário-Computador
16.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176096

RESUMO

Neuromuscular functional electrical stimulation represents a valid technique for functional rehabilitation or, in the form of a neuroprosthesis, for the assistance of neurological patients. However, the selected stimulation of single muscles through surface electrodes remains challenging particularly for the upper extremity. In this paper, we present the MyoCeption, a comprehensive setup, which enables intuitive modeling of the user's musculoskeletal system, as well as proportional stimulation of the muscles with 16-bit resolution through up to 10 channels. The system can be used to provide open-loop force control, which, if coupled with an adequate body tracking system, can be used to implement an impedance control where the control loop is closed around the body posture. The system is completely self-contained and can be used in a wide array of scenarios, from rehabilitation to VR to teleoperation. Here, the MyoCeption's control environment has been experimentally validated through comparison with a third-party simulation suite. The results indicate that the musculoskeletal model used for the MyoCeption provides muscle geometries that are qualitatively similar to those computed in the baseline model.


Assuntos
Postura , Extremidade Superior , Simulação por Computador , Humanos , Músculo Esquelético/fisiologia , Músculos/fisiologia , Postura/fisiologia , Extremidade Superior/fisiologia
17.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176151

RESUMO

Patients suffering from neuromuscular diseases experience motor disabilities which hinder their independence during activities of daily living (ADLs). For such impaired subjects, robotic devices and Functional Electrical Stimulation (FES) are technologies commonly used to rehabilitate lost functions. Nevertheless, both systems present some limitations, and merging FES and robots in Hybrid Robotic Rehabilitation Systems allows to overcome these boundaries. Here we propose for the first time a hybrid cooperative controller involving FES and a soft wearable upper arm exosuit to rehabilitate elbow movements. We tested the designed hybrid controller on six healthy participants. The results showed how the proposed hybrid controller allowed the wearers to perform flexion movements with no significant decrease in accuracy and precision with respect to the exosuit alone, while significantly decreasing the fatigue level by about 63% and delaying its onset with respect to the FES action alone.


Assuntos
Atividades Cotidianas , Braço , Braço/fisiologia , Estimulação Elétrica , Humanos , Movimento/fisiologia , Extremidade Superior/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-35576429

RESUMO

Stroke can be a devastating condition that impairs the upper limb and reduces mobility. Wearable robots can aid impaired users by supporting performance of Activities of Daily Living (ADLs). In the past decade, soft devices have become popular due to their inherent malleable and low-weight properties that makes them generally safer and more ergonomic. In this study, we present an improved version of our previously developed gravity-compensating upper limb exosuit and introduce a novel hand exoskeleton. The latter uses 3D-printed structures that are attached to the back of the fingers which prevent undesired hyperextension of joints. We explored the feasibility of using this integrated system in a sample of 10 chronic stroke patients who performed 10 ADLs. We observed a significant reduction of 30.3 ± 3.5% (mean ± standard error), 31.2 ± 3.2% and 14.0 ± 5.1% in the mean muscular activity of the Biceps Brachii (BB), Anterior Deltoid (AD) and Extensor Digitorum Communis muscles, respectively. Additionally, we observed a reduction of 14.0 ± 11.5%, 14.7 ± 6.9% and 12.8 ± 4.4% in the coactivation of the pairs of muscles BB and Triceps Brachii (TB), BB and AD, and TB and Pectoralis Major (PM), respectively, typically associated to pathological muscular synergies, without significant degradation of healthy muscular coactivation. There was also a significant increase of elbow flexion angle ( 12.1±1.5° ). These results further cement the potential of using lightweight wearable devices to assist impaired users.


Assuntos
Robótica , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Eletromiografia , Estudos de Viabilidade , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior
19.
J Neuroeng Rehabil ; 8: 28, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21600031

RESUMO

BACKGROUND: It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. METHODS: We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects) with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA), during which no force was applied, a force field adaptation phase (CF), and a wash-out phase (WO) in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. RESULTS: During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. CONCLUSIONS: Spatial abnormalities in children affected by cerebral palsy may be related not only to disturbance in motor control signals generating weakness and spasticity, but also to an inefficient control strategy which is not based on a robust knowledge of the dynamical features of their upper limb. This lack of information could be related to the congenital nature of the brain damage and may contribute to a better delineation of therapeutic intervention.


Assuntos
Adaptação Fisiológica/fisiologia , Paralisia Cerebral/psicologia , Paralisia Cerebral/reabilitação , Meio Ambiente , Robótica , Adolescente , Algoritmos , Anisotropia , Gânglios da Base/patologia , Encéfalo/patologia , Paralisia Cerebral/patologia , Criança , Feminino , Lobo Frontal/patologia , Lateralidade Funcional/fisiologia , Humanos , Masculino , Movimento/fisiologia
20.
Front Hum Neurosci ; 15: 726841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671248

RESUMO

In this study, we designed a robot-based method to compute a mechanical impedance model that could extract the viscoelastic properties of the wrist joint. Thirteen subjects participated in the experiment, testing both dominant and nondominant hands. Specifically, the robotic device delivered position-controlled disturbances in the flexion-extension degree of freedom of the wrist. The external perturbations were characterized by small amplitudes and fast velocities, causing rotation at the wrist joint. The viscoelastic characteristics of the mechanical impedance of the joint were evaluated from the wrist kinematics and corresponding torques. Since the protocol used position inputs to determine changes in mean wrist torque, a detailed analysis of wrist joint dynamics could be made. The scientific question was whether and how these mechanical features changed with various grip demands and perturbation velocities. Nine experimental conditions were tested for each hand, given by the combination of three velocity perturbations (fast, medium, and slow) and three hand grip conditions [self-selected grip, medium and high grip force, as percentage of the maximum voluntary contraction (MVC)]. Throughout the experiments, electromyographic signals of the extensor carpi radialis (ECR) and the flexor carpi radialis (FCR) were recorded. The novelty of this work included a custom-made soft grip sensor, wrapped around the robotic handle, to accurately quantify the grip force exerted by the subjects during experimentation. Damping parameters were in the range of measurements from prior studies and consistent among the different experimental conditions. Stiffness was independent of both direction and velocity of perturbations and increased with increasing grip demand. Both damping and stiffness were not different between the dominant and nondominant hands. These results are crucial to improving our knowledge of the mechanical characteristics of the wrist, and how grip demands influence these properties. This study is the foundation for future work on how mechanical characteristics of the wrist are affected in pathological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA