Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 298(1): 101445, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822841

RESUMO

The Escherichia coli yobA-yebZ-yebY (AZY) operon encodes the proteins YobA, YebZ, and YebY. YobA and YebZ are homologs of the CopC periplasmic copper-binding protein and the CopD putative copper importer, respectively, whereas YebY belongs to the uncharacterized Domain of Unknown Function 2511 family. Despite numerous studies of E. coli copper homeostasis and the existence of the AZY operon in a range of bacteria, the operon's proteins and their functional roles have not been explored. In this study, we present the first biochemical and functional studies of the AZY proteins. Biochemical characterization and structural modeling indicate that YobA binds a single Cu2+ ion with high affinity. Bioinformatics analysis shows that YebY is widespread and encoded either in AZY operons or in other genetic contexts unrelated to copper homeostasis. We also determined the 1.8 Å resolution crystal structure of E. coli YebY, which closely resembles that of the lantibiotic self-resistance protein MlbQ. Two strictly conserved cysteine residues form a disulfide bond, consistent with the observed periplasmic localization of YebY. Upon treatment with reductants, YebY binds Cu+ and Cu2+ with low affinity, as demonstrated by metal-binding analysis and tryptophan fluorescence. Finally, genetic manipulations show that the AZY operon is not involved in copper tolerance or antioxidant defense. Instead, YebY and YobA are required for the activity of the copper-related NADH dehydrogenase II. These results are consistent with a potential role of the AZY operon in copper delivery to membrane proteins.


Assuntos
Cobre , Proteínas de Escherichia coli , Escherichia coli , Óperon , Proteínas Periplásmicas de Ligação , Quelantes/metabolismo , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Relação Estrutura-Atividade
2.
Proc Natl Acad Sci U S A ; 117(50): 31850-31860, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257549

RESUMO

There is ongoing debate regarding the mechanism through which cation/proton antiporters (CPAs), like Thermus thermophilus NapA (TtNapA) and Escherichia coli NapA (EcNhaA), alternate between their outward- and inward-facing conformations in the membrane. CPAs comprise two domains, and it is unclear whether the transition is driven by their rocking-bundle or elevator motion with respect to each other. Here we address this question using metadynamics simulations of TtNapA, where we bias conformational sampling along two axes characterizing the two proposed mechanisms: angular and translational motions, respectively. By applying the bias potential for the two axes simultaneously, as well as to the angular, but not the translational, axis alone, we manage to reproduce each of the two known states of TtNapA when starting from the opposite state, in support of the rocking-bundle mechanism as the driver of conformational change. Next, starting from the inward-facing conformation of EcNhaA, we sample what could be its long-sought-after outward-facing conformation and verify it using cross-linking experiments.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Thermus thermophilus/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/ultraestrutura , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Prótons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestrutura
3.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835119

RESUMO

The opportunistic fungus Aspergillus fumigatus is the primary invasive mold pathogen in humans, and is responsible for an estimated 200,000 yearly deaths worldwide. Most fatalities occur in immunocompromised patients who lack the cellular and humoral defenses necessary to halt the pathogen's advance, primarily in the lungs. One of the cellular responses used by macrophages to counteract fungal infection is the accumulation of high phagolysosomal Cu levels to destroy ingested pathogens. A. fumigatus responds by activating high expression levels of crpA, which encodes a Cu+ P-type ATPase that actively transports excess Cu from the cytoplasm to the extracellular environment. In this study, we used a bioinformatics approach to identify two fungal-unique regions in CrpA that we studied by deletion/replacement, subcellular localization, Cu sensitivity in vitro, killing by mouse alveolar macrophages, and virulence in a mouse model of invasive pulmonary aspergillosis. Deletion of CrpA fungal-unique amino acids 1-211 containing two N-terminal Cu-binding sites, moderately increased Cu-sensitivity but did not affect expression or localization to the endoplasmic reticulum (ER) and cell surface. Replacement of CrpA fungal-unique amino acids 542-556 consisting of an intracellular loop between the second and third transmembrane helices resulted in ER retention of the protein and strongly increased Cu-sensitivity. Deleting CrpA N-terminal amino acids 1-211 or replacing amino acids 542-556 also increased sensitivity to killing by mouse alveolar macrophages. Surprisingly, the two mutations did not affect virulence in a mouse model of infection, suggesting that even weak Cu-efflux activity by mutated CrpA preserves fungal virulence.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Humanos , Animais , Camundongos , Aspergillus fumigatus/genética , Virulência , Proteínas Fúngicas/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo
4.
J Biol Chem ; 297(4): 101087, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416234

RESUMO

All extant life forms require trace transition metals (e.g., Fe2/3+, Cu1/2+, and Mn2+) to survive. However, as these are environmentally scarce, organisms have evolved sophisticated metal uptake machineries. In bacteria, high-affinity import of transition metals is predominantly mediated by ABC transporters. During bacterial infection, sequestration of metal by the host further limits the availability of these ions, and accordingly, bacterial ABC transporters (importers) of metals are key virulence determinants. However, the structure-function relationships of these metal transporters have not been fully elucidated. Here, we used metal-sensitivity assays, advanced structural modeling, and enzymatic assays to study the ABC transporter MntBC-A, a virulence determinant of the bacterial human pathogen Bacillus anthracis. We find that despite its broad metal-recognition profile, MntBC-A imports only manganese, whereas zinc can function as a high-affinity inhibitor of MntBC-A. Computational analysis shows that the transmembrane metal permeation pathway is lined with six titratable residues that can coordinate the positively charged metal, and mutagenesis studies show that they are essential for manganese transport. Modeling suggests that access to these titratable residues is blocked by a ladder of hydrophobic residues, and ATP-driven conformational changes open and close this hydrophobic seal to permit metal binding and release. The conservation of this arrangement of titratable and hydrophobic residues among ABC transporters of transition metals suggests a common mechanism. These findings advance our understanding of transmembrane metal recognition and permeation and may aid the design and development of novel antibacterial agents.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Bacillus anthracis/química , Proteínas de Bactérias/química , Manganês/química , Modelos Moleculares , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo , Interações Hidrofóbicas e Hidrofílicas , Manganês/metabolismo
5.
Mol Microbiol ; 115(1): 41-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32864748

RESUMO

Erv14, a conserved cargo receptor of COPII vesicles, helps the proper trafficking of many but not all transporters to the yeast plasma membrane, for example, three out of five alkali-metal-cation transporters in Saccharomyces cerevisiae. Among them, the Nha1 cation/proton antiporter, which participates in cell cation and pH homeostasis, is a large membrane protein (985 aa) possessing a long hydrophilic C-terminus (552 aa) containing six conserved regions (C1-C6) with unknown function. A short Nha1 version, lacking almost the entire C-terminus, still binds to Erv14 but does not need it to be targeted to the plasma membrane. Comparing the localization and function of ScNha1 variants shortened at its C-terminus in cells with or without Erv14 reveals that only ScNha1 versions possessing the complete C5 region are dependent on Erv14. In addition, our broad evolutionary conservation analysis of fungal Na+ /H+ antiporters identified new conserved regions in their C-termini, and our experiments newly show C5 and other, so far unknown, regions of the C-terminus, to be involved in the functionality and substrate specificity of ScNha1. Taken together, our results reveal that also relatively small hydrophilic parts of some yeast membrane proteins underlie their need to interact with the Erv14 cargo receptor.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Antiporters/genética , Antiporters/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/fisiologia , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Sódio/metabolismo
6.
Biochem J ; 478(12): 2371-2384, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34085703

RESUMO

Photosystem I is defined as plastocyanin-ferredoxin oxidoreductase. Taking advantage of genetic engineering, kinetic analyses and cryo-EM, our data provide novel mechanistic insights into binding and electron transfer between PSI and Pc. Structural data at 2.74 Šresolution reveals strong hydrophobic interactions in the plant PSI-Pc ternary complex, leading to exclusion of water molecules from PsaA-PsaB/Pc interface once the PSI-Pc complex forms. Upon oxidation of Pc, a slight tilt of bound oxidized Pc allows water molecules to accommodate the space between Pc and PSI to drive Pc dissociation. Such a scenario is consistent with the six times larger dissociation constant of oxidized as compared with reduced Pc and mechanistically explains how this molecular machine optimized electron transfer for fast turnover.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Sítios de Ligação , Transporte de Elétrons , Cinética , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica
7.
Nat Chem Biol ; 14(7): 715-722, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915236

RESUMO

ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to move molecules through cellular membranes. They are directly linked to human diseases, cancer multidrug resistance, and bacterial virulence. Very little is known of the conformational dynamics of ABC transporters, especially at the single-molecule level. Here, we combine single-molecule spectroscopy and a novel molecular simulation approach to investigate the conformational dynamics of the ABC transporter BtuCD. We observe a single dominant population of molecules in each step of the transport cycle and tight coupling between conformational transitions and ligand binding. We uncover transient conformational changes that allow substrate to enter the transporter. This is followed by a 'squeezing' motion propagating from the extracellular to the intracellular side of the translocation cavity. This coordinated sequence of events provides a mechanism for the unidirectional transport of vitamin B12 by BtuCD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Cisteína/química , Proteínas de Escherichia coli/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Conformação Proteica
8.
Plant Physiol ; 175(1): 438-456, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710128

RESUMO

In search of Botrytis cinerea cell death-inducing proteins, we found a xyloglucanase (BcXYG1) that induced strong necrosis and a resistance response in dicot plants. Expression of the BcXYG1 gene was strongly induced during the first 12 h post inoculation, and analysis of disease dynamics using PathTrack showed that a B. cinerea strain overexpressing BcXYG1 produced early local necrosis, supporting a role of BcXYG1 as an early cell death-inducing factor. The xyloglucanase activity of BcXYG1 was not necessary for the induction of necrosis and plant resistance, as a mutant of BcXYG1 lacking the xyloglucanase enzymatic activity retained both functions. Residues in two exposed loops on the surface of BcXYG1 were found to be necessary for the induction of cell death but not to induce plant resistance. Further analyses showed that BcXYG1 is apoplastic and possibly interacts with the proteins of the plant cell membrane and also that the BcXYG1 cell death-promoting signal is mediated by the leucine-rich repeat receptor-like kinases BAK1 and SOBIR1. Our findings support the role of cell death-inducing proteins in establishing the infection of necrotrophic pathogens and highlight the recognition of fungal apoplastic proteins by the plant immune system as an important mechanism of resistance against this class of pathogens.


Assuntos
Botrytis/enzimologia , Glicosídeo Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Transdução de Sinais , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Botrytis/genética , Glicosídeo Hidrolases/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Phaseolus/imunologia , Phaseolus/microbiologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Triticum/imunologia , Triticum/microbiologia
9.
Proc Natl Acad Sci U S A ; 112(41): E5575-82, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417087

RESUMO

The Escherichia coli Na(+)/H(+) antiporter (Ec-NhaA) is the best-characterized of all pH-regulated Na(+)/H(+) exchangers that control cellular Na(+) and H(+) homeostasis. Ec-NhaA has 12 helices, 2 of which (VI and VII) are absent from other antiporters that share the Ec-NhaA structural fold. This α-hairpin is located in the dimer interface of the Ec-NhaA homodimer together with a ß-sheet. Here we examine computationally and experimentally the role of the α-hairpin in the stability, dimerization, transport, and pH regulation of Ec-NhaA. Evolutionary analysis (ConSurf) indicates that the VI-VII helical hairpin is much less conserved than the remaining transmembrane region. Moreover, normal mode analysis also shows that intact NhaA and a variant, deleted of the α-hairpin, share similar dynamics, suggesting that the structure may be dispensable. Thus, two truncated Ec-NhaA mutants were constructed, one deleted of the α-hairpin and another also lacking the ß-sheet. The mutants were studied at physiological pH in the membrane and in detergent micelles. The findings demonstrate that the truncated mutants retain significant activity and regulatory properties but are defective in the assembly/stability of the Ec-NhaA dimer.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Multimerização Proteica , Trocadores de Sódio-Hidrogênio/química , Membrana Celular/química , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Mutação , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Trocadores de Sódio-Hidrogênio/genética , Relação Estrutura-Atividade
10.
Trends Pharmacol Sci ; 44(5): 258-262, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934025

RESUMO

Cation/proton antiporters (CPAs) regulate cells' salt concentration and pH. Their malfunction is associated with a range of human pathologies, yet only a handful of CPA-targeting therapeutics are presently in clinical development. Here, we discuss how recently published mammalian protein structures and emerging computational technologies may help to bridge this gap.


Assuntos
Antiporters , Prótons , Animais , Humanos , Antiporters/metabolismo , Cátions/metabolismo , Preparações Farmacêuticas , Concentração de Íons de Hidrogênio , Mamíferos/metabolismo
11.
Protein Sci ; 32(3): e4582, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718848

RESUMO

The ConSurf web-sever for the analysis of proteins, RNA, and DNA provides a quick and accurate estimate of the per-site evolutionary rate among homologues. The analysis reveals functionally important regions, such as catalytic and ligand-binding sites, which often evolve slowly. Since the last report in 2016, ConSurf has been improved in multiple ways. It now has a user-friendly interface that makes it easier to perform the analysis and to visualize the results. Evolutionary rates are calculated based on a set of homologous sequences, collected using hidden Markov model-based search tools, recently embedded in the pipeline. Using these, and following the removal of redundancy, ConSurf assembles a representative set of effective homologues for protein and nucleic acid queries to enable informative analysis of the evolutionary patterns. The analysis is particularly insightful when the evolutionary rates are mapped on the macromolecule structure. In this respect, the availability of AlphaFold model structures of essentially all UniProt proteins makes ConSurf particularly relevant to the research community. The UniProt ID of a query protein with an available AlphaFold model can now be used to start a calculation. Another important improvement is the Python re-implementation of the entire computational pipeline, making it easier to maintain. This Python pipeline is now available for download as a standalone version. We demonstrate some of ConSurf's key capabilities by the analysis of caveolin-1, the main protein of membrane invaginations called caveolae.


Assuntos
Evolução Biológica , Evolução Molecular , Conformação Proteica , Sequência Conservada/genética , Proteínas/química , Software
12.
Protein Sci ; 31(12): e4460, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177733

RESUMO

The human Na+ /H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ across the plasma membrane in exchange for protons, and is implicated in various pathologies. It is a 537 amino acids protein with an 82 residues long hydrophilic cytoplasmic N-terminus followed by a transmembrane part comprising 14 transmembrane helices. We optimized the functional expression of HsNHA2 in the plasma membrane of a salt-sensitive Saccharomyces cerevisiae strain and characterized in vivo a set of mutated or truncated versions of HsNHA2 in terms of their substrate specificity, transport activity, localization, and protein stability. We identified a highly conserved proline 246, located in the core of the protein, as being crucial for ion selectivity. The replacement of P246 with serine or threonine resulted in antiporters with altered substrate specificity that were not only highly active at acidic pH 4.0 (like the native antiporter), but also at neutral pH. P246T/S versions also exhibited increased resistance to the HsNHA2-specific inhibitor phloretin. We experimentally proved that a putative salt bridge between E215 and R432 is important for antiporter function, but also structural integrity. Truncations of the first 50-70 residues of the N-terminus doubled the transport activity of HsNHA2, while changes in the charge at positions E47, E56, K57, or K58 decreased the antiporter's transport activity. Thus, the hydrophilic N-terminal part of the protein appears to allosterically auto-inhibit cation transport of HsNHA2. Our data also show this in vivo approach to be useful for a rapid screening of SNP's effect on HsNHA2 activity.


Assuntos
Prótons , Trocadores de Sódio-Hidrogênio , Humanos , Sequência de Aminoácidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
13.
J Mol Biol ; 433(20): 167127, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224746

RESUMO

Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy-applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure-function relationships.


Assuntos
Proteínas/química , Animais , Cristalografia por Raios X/métodos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica
14.
Nat Commun ; 12(1): 2166, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846308

RESUMO

Crh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Botrytis/enzimologia , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Glicosiltransferases/metabolismo , Células Vegetais/microbiologia , Agrobacterium/metabolismo , Botrytis/crescimento & desenvolvimento , Botrytis/patogenicidade , Morte Celular , Resistência à Doença , Proteínas Fúngicas/química , Doenças das Plantas/microbiologia , Imunidade Vegetal , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/microbiologia
15.
Protein Sci ; 29(1): 258-267, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702846

RESUMO

Patterns observed by examining the evolutionary relationships among proteins of common origin can reveal the structural and functional importance of specific residue positions. In particular, amino acids that are highly conserved (i.e., their positions evolve at a slower rate than other positions) are particularly likely to be of biological importance, for example, for ligand binding. ConSurf is a bioinformatics tool for accurately estimating the evolutionary rate of each position in a protein family. Here we introduce a new release of ConSurf-DB, a database of precalculated ConSurf evolutionary conservation profiles for proteins of known structure. ConSurf-DB provides high-accuracy estimates of the evolutionary rates of the amino acids in each protein. A reliable estimate of a query protein's evolutionary rates depends on having a sufficiently large number of effective homologues (i.e., nonredundant yet sufficiently similar). With current sequence data, ConSurf-DB covers 82% of the PDB proteins. It will be updated on a regular basis to ensure that coverage remains high-and that it might even increase. Much effort was dedicated to improving the user experience. The repository is available at https://consurfdb.tau.ac.il/. BROADER AUDIENCE: By comparing a protein to other proteins of similar origin, it is possible to determine the extent to which each amino acid position in the protein evolved slowly or rapidly. A protein's evolutionary profile can provide valuable insights: For example, amino acid positions that are highly conserved (i.e., evolved slowly) are particularly likely to be of structural and/or functional importance, for example, for ligand binding and catalysis. We introduce here a new and improved version of ConSurf-DB, a continually updated database that provides precalculated evolutionary profiles of proteins with known structure.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Proteínas/genética , Sequência de Aminoácidos , Sequência Conservada , Bases de Dados de Proteínas , Evolução Molecular , Conformação Proteica
16.
Nat Commun ; 9(1): 4205, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310075

RESUMO

Cation/proton antiporters (CPAs) play a major role in maintaining living cells' homeostasis. CPAs are commonly divided into two main groups, CPA1 and CPA2, and are further characterized by two main phenotypes: ion selectivity and electrogenicity. However, tracing the evolutionary relationships of these transporters is challenging because of the high diversity within CPAs. Here, we conduct comprehensive evolutionary analysis of 6537 representative CPAs, describing the full complexity of their phylogeny, and revealing a sequence motif that appears to determine central phenotypic characteristics. In contrast to previous suggestions, we show that the CPA1/CPA2 division only partially correlates with electrogenicity. Our analysis further indicates two acidic residues in the binding site that carry the protons in electrogenic CPAs, and a polar residue in the unwound transmembrane helix 4 that determines ion selectivity. A rationally designed triple mutant successfully converted the electrogenic CPA, EcNhaA, to be electroneutral.


Assuntos
Antiporters/classificação , Filogenia , Prótons , Aminoácidos/metabolismo , Sítios de Ligação , Cátions , Humanos , Modelos Moleculares , Mutação/genética , Transporte Proteico/efeitos dos fármacos , Sódio/farmacologia , Valinomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA