Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(12): 1517-1527, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169013

RESUMO

CRELD1 is a pivotal factor for heart development, the function of which is unknown in adult life. We here provide evidence that CRELD1 is an important gatekeeper of immune system homeostasis. Exploiting expression variance in large human cohorts contrasting individuals with the lowest and highest CRELD1 expression levels revealed strong phenotypic, functional and transcriptional differences, including reduced CD4+ T cell numbers. These findings were validated in T cell-specific Creld1-deficient mice. Loss of Creld1 was associated with simultaneous overactivation and increased apoptosis, resulting in a net loss of T cells with age. Creld1 was transcriptionally and functionally linked to Wnt signaling. Collectively, gene expression variance in large human cohorts combined with murine genetic models, transcriptomics and functional testing defines CRELD1 as an important modulator of immune homeostasis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Homeostase , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Animais , Moléculas de Adesão Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Proteínas da Matriz Extracelular/genética , Expressão Gênica , Técnicas de Inativação de Genes , Homeostase/imunologia , Humanos , Imunossenescência , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Via de Sinalização Wnt
2.
Immunity ; 54(7): 1371-1373, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260884

RESUMO

The interaction between myeloid cells and the extracellular matrix is important for tissue homeostasis and pathophysiology. In this issue of Immunity, Keerthivasan et al. reveal crosstalk dependent on the collagen receptor LAIR1 that regulates the dynamics of monocytes and macrophages during steady-state and cancer.


Assuntos
Colágeno , Fibroblastos , Matriz Extracelular , Monócitos , Células Mieloides
3.
Immunity ; 50(2): 288-301, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30784577

RESUMO

Myelopoiesis ensures the steady state of the myeloid cell compartment. Technological advances in fate mapping and genetic engineering, as well as the advent of single cell RNA-sequencing, have highlighted the heterogeneity of the hematopoietic system and revealed new concepts in myeloid cell ontogeny. These technologies are also shedding light on mechanisms of myelopoiesis at homeostasis and at different phases of infection and inflammation, illustrating important feedback loops between affected tissues and the bone marrow. We review these findings here and revisit principles in myelopoiesis in light of the evolving understanding of myeloid cell ontogeny and heterogeneity. We argue for the importance of system-wide evaluation of changes in myelopoiesis and discuss how even after the resolution of inflammation, long-lasting alterations in myelopoiesis may play a role in innate immune memory or trained immunity.


Assuntos
Homeostase/imunologia , Infecções/imunologia , Inflamação/imunologia , Mielopoese/imunologia , Animais , Medula Óssea/imunologia , Humanos , Imunidade Inata/imunologia , Modelos Imunológicos , Células Mieloides/imunologia , Células Progenitoras Mieloides/imunologia
4.
EMBO J ; 42(21): e113891, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743763

RESUMO

Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.


Assuntos
Cílios , Organelas , Cílios/metabolismo , Diferenciação Celular
5.
Trends Immunol ; 44(11): 865-867, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37833121

RESUMO

Yolk sac-derived macrophages have been described to promote organogenesis and tissue function in animal models, but the relevance of these studies for humans has been debated. Wang et al. reveal that human macrophage development follows similar developmental trajectories with functionally distinct macrophage populations across tissues as observed in mice.


Assuntos
Macrófagos , Organogênese , Humanos , Animais , Camundongos
6.
Nature ; 568(7753): 541-545, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971820

RESUMO

Osteoclasts are multinucleated giant cells that resorb bone, ensuring development and continuous remodelling of the skeleton and the bone marrow haematopoietic niche. Defective osteoclast activity leads to osteopetrosis and bone marrow failure1-9, whereas excess activity can contribute to bone loss and osteoporosis10. Osteopetrosis can be partially treated by bone marrow transplantation in humans and mice11-18, consistent with a haematopoietic origin of osteoclasts13,16,19 and studies that suggest that they develop by fusion of monocytic precursors derived from haematopoietic stem cells in the presence of CSF1 and RANK ligand1,20. However, the developmental origin and lifespan of osteoclasts, and the mechanisms that ensure maintenance of osteoclast function throughout life in vivo remain largely unexplored. Here we report that osteoclasts that colonize fetal ossification centres originate from embryonic erythro-myeloid progenitors21,22. These erythro-myeloid progenitor-derived osteoclasts are required for normal bone development and tooth eruption. Yet, timely transfusion of haematopoietic-stem-cell-derived monocytic cells in newborn mice is sufficient to rescue bone development in early-onset autosomal recessive osteopetrosis. We also found that the postnatal maintenance of osteoclasts, bone mass and the bone marrow cavity involve iterative fusion of circulating blood monocytic cells with long-lived osteoclast syncytia. As a consequence, parabiosis or transfusion of monocytic cells results in long-term gene transfer in osteoclasts in the absence of haematopoietic-stem-cell chimerism, and can rescue an adult-onset osteopetrotic phenotype caused by cathepsin K deficiency23,24. In sum, our results identify the developmental origin of osteoclasts and a mechanism that controls their maintenance in bones after birth. These data suggest strategies to rescue osteoclast deficiency in osteopetrosis and to modulate osteoclast activity in vivo.


Assuntos
Células-Tronco Hematopoéticas/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteopetrose/genética , Animais , Animais Recém-Nascidos , Desenvolvimento Ósseo , Feminino , Genes Recessivos , Masculino , Camundongos , Osteopetrose/patologia , Erupção Dentária
7.
Eur J Immunol ; 53(10): e2250233, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467166

RESUMO

Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Monócitos , AVC Isquêmico/complicações , Macrófagos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Microglia
8.
Mol Biol Rep ; 51(1): 343, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400845

RESUMO

The consumption of processed food is on the rise leading to huge intake of excess dietary salt, which strongly correlates with development of hypertension, often leading to cardiovascular diseases such as stroke and heart attack, as well as activation of the immune system. The effect of salt on macrophages is especially interesting as they are able to sense high sodium levels in tissues leading to transcriptional changes. In the skin, macrophages were shown to influence lymphatic vessel growth which, in turn, enables the transport of excess salt and thereby prevents the development of high blood pressure. Furthermore, salt storage in the skin has been linked to the onset of pro-inflammatory effector functions of macrophages in pathogen defence. However, there is only little known about the mechanisms which are involved in changing macrophage function to salt exposure. Here, we characterize the response of macrophages to excess salt both in vitro and in vivo. Our results validate and strengthen the notion that macrophages exhibit chemotactic migration in response to salt gradients in vitro. Furthermore, we demonstrate a reduction in phagocytosis and efferocytosis following acute salt challenge in vitro. While acute exposure to a high-salt diet in vivo has a less pronounced impact on macrophage core functions such as phagocytosis, our data indicate that prolonged salt challenge may exert a distinct effect on the function of macrophages. These findings suggest a potential role for excessive salt sensing by macrophages in the manifestation of diseases related to high-salt diets and explicitly highlight the need for in vivo work to decipher the physiologically relevant impact of excess salt on tissue and cell function.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Humanos , Macrófagos , Cloreto de Sódio , Fagocitose
9.
Nature ; 549(7672): 389-393, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28854169

RESUMO

The pathophysiology of neurodegenerative diseases is poorly understood and there are few therapeutic options. Neurodegenerative diseases are characterized by progressive neuronal dysfunction and loss, and chronic glial activation. Whether microglial activation, which is generally viewed as a secondary process, is harmful or protective in neurodegeneration remains unclear. Late-onset neurodegenerative disease observed in patients with histiocytoses, which are clonal myeloid diseases associated with somatic mutations in the RAS-MEK-ERK pathway such as BRAF(V600E), suggests a possible role of somatic mutations in myeloid cells in neurodegeneration. Yet the expression of BRAF(V600E) in the haematopoietic stem cell lineage causes leukaemic and tumoural diseases but not neurodegenerative disease. Microglia belong to a lineage of adult tissue-resident myeloid cells that develop during organogenesis from yolk-sac erythro-myeloid progenitors (EMPs) distinct from haematopoietic stem cells. We therefore hypothesized that a somatic BRAF(V600E) mutation in the EMP lineage may cause neurodegeneration. Here we show that mosaic expression of BRAF(V600E) in mouse EMPs results in clonal expansion of tissue-resident macrophages and a severe late-onset neurodegenerative disorder. This is associated with accumulation of ERK-activated amoeboid microglia in mice, and is also observed in human patients with histiocytoses. In the mouse model, neurobehavioural signs, astrogliosis, deposition of amyloid precursor protein, synaptic loss and neuronal death were driven by ERK-activated microglia and were preventable by BRAF inhibition. These results identify the fetal precursors of tissue-resident macrophages as a potential cell-of-origin for histiocytoses and demonstrate that a somatic mutation in the EMP lineage in mice can drive late-onset neurodegeneration. Moreover, these data identify activation of the MAP kinase pathway in microglia as a cause of neurodegeneration and this offers opportunities for therapeutic intervention aimed at the prevention of neuronal death in neurodegenerative diseases.


Assuntos
Células Precursoras Eritroides/patologia , Sistema de Sinalização das MAP Quinases , Mutação , Células Progenitoras Mieloides/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Células Clonais/enzimologia , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Células Precursoras Eritroides/enzimologia , Células Precursoras Eritroides/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Histiocitose/enzimologia , Histiocitose/genética , Histiocitose/metabolismo , Histiocitose/patologia , Humanos , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Mosaicismo , Células Progenitoras Mieloides/enzimologia , Células Progenitoras Mieloides/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo
10.
FASEB J ; 35(10): e21939, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34549824

RESUMO

The unfolded protein response (UPR) is associated with hepatic metabolic function, yet it is not well understood how endoplasmic reticulum (ER) disturbance might influence metabolic homeostasis. Here, we describe the physiological function of Cysteine-rich with EGF-like domains 2 (Creld2), previously characterized as a downstream target of the ER-stress signal transducer Atf6. To this end, we generated Creld2-deficient mice and induced UPR by injection of tunicamycin. Creld2 augments protein folding and creates an interlink between the UPR axes through its interaction with proteins involved in the cellular stress response. Thereby, Creld2 promotes tolerance to ER stress and recovery from acute stress. Creld2-deficiency leads to a dysregulated UPR and causes the development of hepatic steatosis during ER stress conditions. Moreover, Creld2-dependent enhancement of the UPR assists in the regulation of energy expenditure. Furthermore, we observed a sex dimorphism in human and mouse livers with only male patients showing an accumulation of CRELD2 protein during the progression from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and only male Creld2-deficient mice developing hepatic steatosis upon aging. These results reveal a Creld2 function at the intersection between UPR and metabolic homeostasis and suggest a mechanism in which chronic ER stress underlies fatty liver disease in males.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Homeostase , Fígado/metabolismo , Resposta a Proteínas não Dobradas , Envelhecimento , Animais , Progressão da Doença , Estresse do Retículo Endoplasmático , Fígado Gorduroso , Humanos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica
11.
J Mol Cell Cardiol ; 156: 45-56, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773996

RESUMO

CRELD1 (Cysteine-Rich with EGF-Like Domains 1) is a risk gene for non-syndromic atrioventricular septal defects in human patients. In a mouse model, Creld1 has been shown to be essential for heart development, particularly in septum and valve formation. However, due to the embryonic lethality of global Creld1 knockout (KO) mice, its cell type-specific function during peri- and postnatal stages remains unknown. Here, we generated conditional Creld1 KO mice lacking Creld1 either in the endocardium (KOTie2) or the myocardium (KOMyHC). Using a combination of cardiac phenotyping, histology, immunohistochemistry, RNA-sequencing, and flow cytometry, we demonstrate that Creld1 function in the endocardium is dispensable for heart development. Lack of myocardial Creld1 causes extracellular matrix remodeling and trabeculation defects by modulation of the Notch1 signaling pathway. Hence, KOMyHC mice die early postnatally due to myocardial hypoplasia. Our results reveal that Creld1 not only controls the formation of septa and valves at an early stage during heart development, but also cardiac maturation and function at a later stage. These findings underline the central role of Creld1 in mammalian heart development and function.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/fisiologia , Miocárdio/metabolismo , Organogênese/genética , Animais , Biomarcadores , Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Camundongos Knockout , Análise de Célula Única
12.
Int Immunol ; 30(11): 493-501, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-29986024

RESUMO

A literature covering 150 years of research indicates that macrophages are a diverse family of professional phagocytes that continuously explore their environment, recognize and scavenge pathogens, unfit cells, cell debris as well as metabolites, and produce a large range of bioactive molecules and growth factors. A new paradigm suggests that most tissue-resident macrophages originate from fetal precursors that colonize developing organs and self-maintain independently of bone marrow-derived cells throughout life. The differentiation of these precursors is driven by a core macrophage transcriptional program and immediately followed by their specification through expression of tissue-specific transcriptional regulators early during embryogenesis. Despite our increasing understanding of ontogeny and genetic programs that shape differentiation processes and functions of macrophages, the precise developmental trajectories of tissue-resident macrophages remain undefined. Here, I review current models of fetal hematopoietic waves, possible routes of macrophage development and their roles during homeostasis. Further, transgenic mouse models are discussed providing a toolset to study the developmentally and functionally distinct arms of the phagocyte system in vivo.


Assuntos
Homeostase/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Animais , Diferenciação Celular , Humanos , Camundongos , Camundongos Transgênicos
14.
Methods Mol Biol ; 2713: 129-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639119

RESUMO

To better understand the distinct functions of yolk-sac-derived tissue-resident macrophages (TRMs) and bone-marrow-derived macrophages in homeostasis and disease, it is important to trace the ontogeny of these cells. The majority of TRMs originate from erythro-myeloid progenitors (EMPs). EMPs develop into pre-macrophages (pMacs), which can be detected starting at embryonic developmental day (E)9.0, and which give rise to all TRM during early development. pMacs start expressing the gene Cx3cr1, allowing us to genetically target the early yolk-sac wave of pMacs and their progeny. Here, we describe the protocol for the identification of yolk sac-derived TRMs utilizing in utero labelling of the inducible fate mapping Cx3cr1CreERT; Rosa26LSL-eYFP mouse model.


Assuntos
Macrófagos , Saco Vitelino , Animais , Camundongos , Modelos Animais de Doenças , Desenvolvimento Embrionário , Eritromicina
15.
Methods Mol Biol ; 2713: 139-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639120

RESUMO

Macrophages are cells of the innate immune system, which contribute to the maintenance of tissue homeostasis and form the first line of defense against pathogens. Tissue-resident macrophages that originate from erythro-myeloid-progenitors in the yolk sac colonize the organs early during development and self-maintain in most organs throughout adulthood. Under homeostatic and pathological conditions, circulating monocytes infiltrate the tissue, where they differentiate into macrophages. However, particularly upon inflammation, phenotyping of these distinct macrophage populations using surface markers or antibody stainings is insufficient as their phenotypes converge, at least transiently. A well-established method for the developmental origin of different cell types is the use of in vivo fate-mapping models, where a fluorescent reporter will be expressed under the control of a cell type-specific promoter. Here, we describe the Cxcr4CreERT2; Rosa26LSL-tdTomato mouse fate-mapping model, which labels hematopoietic stem cells and, thus, also monocytes and monocyte-derived macrophages while most tissue-resident macrophages are not targeted.


Assuntos
Macrófagos , Monócitos , Animais , Camundongos , Anticorpos , Corantes , Modelos Animais de Doenças , Células-Tronco Hematopoéticas
16.
Elife ; 132024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526524

RESUMO

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Assuntos
Hematopoese , Macrófagos , Animais , Camundongos , Hematopoese/genética , Células-Tronco Hematopoéticas , Diferenciação Celular , Eritropoese , Fígado , Nicho de Células-Tronco/genética
17.
Sci Data ; 11(1): 524, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778016

RESUMO

Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts. However, relevant information resides at differing stages across the data-lifecycle. Often, this information is defined and standardized only at publication stage, which can lead to data loss and workload increase. In this study, we developed Metadatasheet, a metadata standard based on interviews with members of two biomedical consortia and systematic screening of data repositories. It aligns with the data-lifecycle allowing synchronous metadata recording within Microsoft Excel, a widespread data recording software. Additionally, we provide an implementation, the Metadata Workbook, that offers user-friendly features like automation, dynamic adaption, metadata integrity checks, and export options for various metadata standards. By design and due to its extensive documentation, the proposed metadata standard simplifies recording and structuring of metadata for biomedical scientists, promoting practicality and convenience in data management. This framework can accelerate scientific progress by enhancing collaboration and knowledge transfer throughout the intermediate steps of data creation.


Assuntos
Gerenciamento de Dados , Metadados , Pesquisa Biomédica , Gerenciamento de Dados/normas , Metadados/normas , Software
18.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976179

RESUMO

Not only macrophages, but also neutrophils, are a main target of clodronate. In this issue of JEM, Culemann et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20220525) demonstrate that anti-inflammatory effects of clodronate liposomes are driven via stunning of polymorphonuclear neutrophils and not solely through depletion of macrophages.


Assuntos
Ácido Clodrônico , Macrófagos , Ácido Clodrônico/farmacologia , Lipossomos/farmacologia , Neutrófilos
19.
Nat Rev Immunol ; 23(9): 563-579, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922638

RESUMO

Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.


Assuntos
Macrófagos , Fagocitose , Humanos , Transdução de Sinais , Biologia
20.
Cardiovasc Res ; 119(3): 759-771, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001550

RESUMO

AIMS: Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD. METHODS AND RESULTS: Wild-type (WT) and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signalling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm vs. 1.8 ± 0.1, P = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% vs. WT, P = 0.02). Histological analyses revealed a myxomatous remodelling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signalling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of transforming growth factor-ß and inflammation in the disease. CONCLUSION: The KI FlnA-P637Q rat model mimics human myxomatous MVD, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signalling pathways leading to myxomatous MVD. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.


Assuntos
Prolapso da Valva Mitral , Valva Mitral , Adulto , Humanos , Ratos , Animais , Lactente , Valva Mitral/metabolismo , Filaminas/genética , Filaminas/metabolismo , Transcriptoma , Microtomografia por Raio-X , Prolapso da Valva Mitral/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA