Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 73(2): 350-360, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37949638

RESUMO

OBJECTIVE: The gut virome is a dense community of viruses inhabiting the gastrointestinal tract and an integral part of the microbiota. The virome coexists with the other components of the microbiota and with the host in a dynamic equilibrium, serving as a key contributor to the maintenance of intestinal homeostasis and functions. However, this equilibrium can be interrupted in certain pathological states, including inflammatory bowel disease, causing dysbiosis that may participate in disease pathogenesis. Nevertheless, whether virome dysbiosis is a causal or bystander event requires further clarification. DESIGN: This review seeks to summarise the latest advancements in the study of the gut virome, highlighting its cross-talk with the mucosal microenvironment. It explores how cutting-edge technologies may build upon current knowledge to advance research in this field. An overview of virome transplantation in diseased gastrointestinal tracts is provided along with insights into the development of innovative virome-based therapeutics to improve clinical management. RESULTS: Gut virome dysbiosis, primarily driven by the expansion of Caudovirales, has been shown to impact intestinal immunity and barrier functions, influencing overall intestinal homeostasis. Although emerging innovative technologies still need further implementation, they display the unprecedented potential to better characterise virome composition and delineate its role in intestinal diseases. CONCLUSIONS: The field of gut virome is progressively expanding, thanks to the advancements of sequencing technologies and bioinformatic pipelines. These have contributed to a better understanding of how virome dysbiosis is linked to intestinal disease pathogenesis and how the modulation of virome composition may help the clinical intervention to ameliorate gut disease management.


Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Vírus , Humanos , Viroma , Disbiose , Doenças Inflamatórias Intestinais/terapia
2.
Gastrointest Endosc ; 99(6): 914-923, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38128787

RESUMO

BACKGROUND AND AIMS: Nonanesthesiologist-administered propofol (NAAP) is increasingly accepted, but data are limited on drug administration using target-controlled infusion (TCI) in clinical practice. TCI adjusts the drug infusion based on patient-specific parameters, maintaining a constant drug dose to reduce the risk of adverse events (AEs) because of drug overdosing and to enhance patient comfort. The aims of this study were to assess the rate of AEs and to evaluate patient satisfaction with NAAP using TCI in a retrospective cohort of 18,302 procedures. METHODS: Low-risk patients (American Society of Anesthesiologists score I and II) undergoing outpatient GI endoscopic procedures, including EGDs and colonoscopies, were sequentially enrolled at IRCCS San Raffaele Hospital (Milan, Italy) between May 2019 and November 2021. RESULTS: Data from 7162 EGDs and 11,140 colonoscopies were analyzed. Mean patient age was 59.1 ± 14.8 years, and mean body mass index was 24.9 ± 3.7 kg/m2. The male-to-female ratio was equal at 8798 (48.1%):9486 (51.9%). AEs occurred in 240 procedures (1.3%) out of the total cohort, with no differences between EGDs and colonoscopies (100 [1.4%] and 140 [1.2%], respectively; P = .418). Most patients (15,875 [98.9%]) indicated they would likely repeat the procedure with the same sedation protocol. Age (odds ratio, 1.02; 95% confidence interval, 1.01-1.03; P < .008) was the only independent factor associated with overall AEs. CONCLUSIONS: NAAP using TCI is an effective and safe sedation method for routine endoscopy. The proper propofol dosage based on individual patients and the presence of trained operators are crucial for NAAP sedation management.


Assuntos
Anestésicos Intravenosos , Colonoscopia , Endoscopia Gastrointestinal , Satisfação do Paciente , Propofol , Humanos , Propofol/administração & dosagem , Propofol/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Colonoscopia/métodos , Endoscopia Gastrointestinal/métodos , Anestésicos Intravenosos/administração & dosagem , Anestésicos Intravenosos/efeitos adversos , Adulto , Infusões Intravenosas , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/efeitos adversos
3.
Gut ; 72(10): 1838-1847, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36788014

RESUMO

OBJECTIVES: Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown aetiology. Gut virome dysbiosis is fundamental in UC progression, although its role in the early phases of the disease is far from fully understood. Therefore, we sought to investigate the role of a virome-associated protein encoded by the Orthohepadnavirus genus, the hepatitis B virus X protein (HBx), in UC aetiopathogenesis. DESIGN: HBx positivity of UC patient-derived blood and gut mucosa was assessed by RT-PCR and Sanger sequencing and correlated with clinical characteristics by multivariate analysis. Transcriptomics was performed on HBx-overexpressing endoscopic biopsies from healthy donors.C57BL/6 mice underwent intramucosal injections of liposome-conjugated HBx-encoding plasmids or the control, with or without antibiotic treatment. Multidimensional flow cytometry analysis was performed on colonic samples from HBx-treated and control animals. Transepithelial electrical resistance measurement, proliferation assay, chromatin immunoprecipitation assay with sequencing and RNA-sequencing were performed on in vitro models of the gut barrier. HBx-silencing experiments were performed in vitro and in vivo. RESULTS: HBx was detected in about 45% of patients with UC and found to induce colonic inflammation in mice, while its silencing reverted the colitis phenotype in vivo. HBx acted as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering both innate and adaptive mucosal immunity ex vivo and in vivo. CONCLUSION: This study described HBx as a contributor to the UC pathogenesis and provides a new perspective on the virome as a target for tailored treatments.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/patologia , Viroma , Camundongos Endogâmicos C57BL , Colo/patologia , Colite/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças , Sulfato de Dextrana
4.
Diabetologia ; 66(4): 695-708, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692510

RESUMO

AIMS/HYPOTHESIS: Islet autoantibodies (AAbs) are detected in >90% of individuals with clinically suspected type 1 diabetes at disease onset. A single AAb, sometimes at low titre, is often detected in some individuals, making their diagnosis uncertain. Type 1 diabetes genetic risk scores (GRS) are a useful tool for discriminating polygenic autoimmune type 1 diabetes from other types of diabetes, particularly the monogenic forms, but testing is not routinely performed in the clinic. Here, we used a type 1 diabetes GRS to screen for monogenic diabetes in individuals with weak evidence of autoimmunity, i.e. with a single AAb at disease onset. METHODS: In a pilot study, we genetically screened 142 individuals with suspected type 1 diabetes, 42 of whom were AAb-negative, 27 of whom had a single AAb (single AAb-positive) and 73 of whom had multiple AAbs (multiple AAb-positive) at disease onset. Next-generation sequencing (NGS) was performed in 41 AAb-negative participants, 26 single AAb-positive participants and 60 multiple AAb-positive participants using an analysis pipeline of more than 200 diabetes-associated genes. RESULTS: The type 1 diabetes GRS was significantly lower in AAb-negative individuals than in those with a single and multiple AAbs. Pathogenetic class 4/5 variants in MODY or monogenic diabetes genes were identified in 15/41 (36.6%) AAb-negative individuals, while class 3 variants of unknown significance were identified in 17/41 (41.5%). Residual C-peptide levels at diagnosis were higher in individuals with mutations compared to those without pathogenetic variants. Class 3 variants of unknown significance were found in 11/26 (42.3%) single AAb-positive individuals, and pathogenetic class 4/5 variants were present in 2/26 (7.7%) single AAb-positive individuals. No pathogenetic class 4/5 variants were identified in multiple AAb-positive individuals, but class 3 variants of unknown significance were identified in 19/60 (31.7%) patients. Several patients across the three groups had more than one class 3 variant. CONCLUSIONS/INTERPRETATION: These findings provide insights into the genetic makeup of patients who show weak evidence of autoimmunity at disease onset. Absence of islet AAbs or the presence of a single AAb together with a low type 1 diabetes GRS may be indicative of a monogenic form of diabetes, and use of NGS may improve the accuracy of diagnosis.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Autoimunidade/genética , Projetos Piloto , Autoanticorpos , Fatores de Risco
5.
Development ; 147(22)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33046507

RESUMO

The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.


Assuntos
Plexo Corióideo/embriologia , Proteínas de Ligação a DNA/metabolismo , Rombencéfalo/embriologia , Fatores de Transcrição/metabolismo , Animais , Plexo Corióideo/citologia , Proteínas de Ligação a DNA/genética , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Mutantes , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Rombencéfalo/citologia , Fatores de Transcrição/genética , Proteína Wnt3/genética , Proteína Wnt3/metabolismo
6.
J Transl Med ; 21(1): 46, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698146

RESUMO

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic immune-mediated rare disease, characterized by esophageal dysfunctions. It is likely to be primarily activated by food antigens and is classified as a chronic disease for most patients. Therefore, a deeper understanding of the pathogenetic mechanisms underlying EoE is needed to implement and improve therapeutic lines of intervention and ameliorate overall patient wellness. METHODS: RNA-seq data of 18 different studies on EoE, downloaded from NCBI GEO with faster-qdump ( https://github.com/ncbi/sra-tools ), were batch-corrected and analyzed for transcriptomics and metatranscriptomics profiling as well as biological process functional enrichment. The EoE TaMMA web app was designed with plotly and dash. Tabula Sapiens raw data were downloaded from the UCSC Cell Browser. Esophageal single-cell raw data analysis was performed within the Automated Single-cell Analysis Pipeline. Single-cell data-driven bulk RNA-seq data deconvolution was performed with MuSiC and CIBERSORTx. Multi-omics integration was performed with MOFA. RESULTS: The EoE TaMMA framework pointed out disease-specific molecular signatures, confirming its reliability in reanalyzing transcriptomic data, and providing new EoE-specific molecular markers including CXCL14, distinguishing EoE from gastroesophageal reflux disorder. EoE TaMMA also revealed microbiota dysbiosis as a predominant characteristic of EoE pathogenesis. Finally, the multi-omics analysis highlighted the presence of defined classes of microbial entities in subsets of patients that may participate in inducing the antigen-mediated response typical of EoE pathogenesis. CONCLUSIONS: Our study showed that the complex EoE molecular network may be unraveled through advanced bioinformatics, integrating different components of the disease process into an omics-based network approach. This may implement EoE management and treatment in the coming years.


Assuntos
Esofagite Eosinofílica , Humanos , Esofagite Eosinofílica/genética , Multiômica , Disbiose/complicações , Reprodutibilidade dos Testes , Alérgenos
7.
Cell Mol Life Sci ; 79(10): 536, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181557

RESUMO

Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.


Assuntos
Células-Tronco Mesenquimais , Ausência de Peso , Antígenos CD , Células da Medula Óssea , Diferenciação Celular/fisiologia , Humanos , Mecanotransdução Celular , Proteínas de Transporte de Cátions Orgânicos , Osteogênese , Proteoma , Simulação de Ausência de Peso
8.
J Surg Oncol ; 123(1): 315-321, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32964456

RESUMO

BACKGROUND AND OBJECTIVES: The aim of our study was to analyze the results of selective inguinal node irradiation in patients with anal cancer, based on the biopsy of the inguinal sentinel lymph node (SLN), in terms of local control and prognosis. METHODS: Records of patients with anal squamous cell carcinoma from January 2001 to December 2016 were retrospectively reviewed. Tc99 lymphoscintigraphy was performed in all the clinically inguinal negative patients, followed by radio-guided surgical removal of the inguinal SLN. All patients were treated with combined radiochemotherapy. In patients with negative sentinel nodes, the inguinal area was excluded in the radiotherapy field. RESULTS: A total of 123 patients, 76 females (61.8%), mean age 60.1 ± 12.19 years old, underwent intraoperative lymph node retrieval. The histological analysis showed metastasis in the SLN in 28 patients (22.8%). The mean follow-up was 43.44 ± 31.86 months. No inguinal recurrence was observed in patients with negative inguinal sentinel node(s). A statistically significant difference was observed for overall and disease-free survivals in a patient with positive and negative inguinal sentinel nodes. CONCLUSIONS: In patients with anal canal cancer, the exclusion of the inguinal regions from the radiotherapy field, in patients with negative SLN, does not compromise locoregional control nor prognosis.


Assuntos
Neoplasias do Ânus/radioterapia , Carcinoma de Células Escamosas/radioterapia , Biópsia de Linfonodo Sentinela/métodos , Adulto , Idoso , Neoplasias do Ânus/mortalidade , Neoplasias do Ânus/patologia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Canal Inguinal/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Radioterapia de Intensidade Modulada , Estudos Retrospectivos
9.
Brain ; 143(3): 891-905, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129831

RESUMO

Epilepsy is a major health burden, calling for new mechanistic insights and therapies. CRISPR-mediated gene editing shows promise to cure genetic pathologies, although hitherto it has mostly been applied ex vivo. Its translational potential for treating non-genetic pathologies is still unexplored. Furthermore, neurological diseases represent an important challenge for the application of CRISPR, because of the need in many cases to manipulate gene function of neurons in situ. A variant of CRISPR, CRISPRa, offers the possibility to modulate the expression of endogenous genes by directly targeting their promoters. We asked if this strategy can effectively treat acquired focal epilepsy, focusing on ion channels because their manipulation is known be effective in changing network hyperactivity and hypersynchronziation. We applied a doxycycline-inducible CRISPRa technology to increase the expression of the potassium channel gene Kcna1 (encoding Kv1.1) in mouse hippocampal excitatory neurons. CRISPRa-mediated Kv1.1 upregulation led to a substantial decrease in neuronal excitability. Continuous video-EEG telemetry showed that AAV9-mediated delivery of CRISPRa, upon doxycycline administration, decreased spontaneous generalized tonic-clonic seizures in a model of temporal lobe epilepsy, and rescued cognitive impairment and transcriptomic alterations associated with chronic epilepsy. The focal treatment minimizes concerns about off-target effects in other organs and brain areas. This study provides the proof-of-principle for a translational CRISPR-based approach to treat neurological diseases characterized by abnormal circuit excitability.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Disfunção Cognitiva/genética , Disfunção Cognitiva/prevenção & controle , Epilepsia do Lobo Temporal/prevenção & controle , Edição de Genes/métodos , Canal de Potássio Kv1.1/biossíntese , Adenoviridae , Animais , Eletroencefalografia , Epilepsia do Lobo Temporal/complicações , Feminino , Hipocampo/metabolismo , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/fisiologia , Cultura Primária de Células , Transfecção , Regulação para Cima
10.
Mol Ther ; 28(1): 235-253, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31607539

RESUMO

Dravet syndrome (DS) is a severe epileptic encephalopathy caused mainly by heterozygous loss-of-function mutations of the SCN1A gene, indicating haploinsufficiency as the pathogenic mechanism. Here we tested whether catalytically dead Cas9 (dCas9)-mediated Scn1a gene activation can rescue Scn1a haploinsufficiency in a mouse DS model and restore physiological levels of its gene product, the Nav1.1 voltage-gated sodium channel. We screened single guide RNAs (sgRNAs) for their ability to stimulate Scn1a transcription in association with the dCas9 activation system. We identified a specific sgRNA that increases Scn1a gene expression levels in cell lines and primary neurons with high specificity. Nav1.1 protein levels were augmented, as was the ability of wild-type immature GABAergic interneurons to fire action potentials. A similar enhancement of Scn1a transcription was achieved in mature DS interneurons, rescuing their ability to fire. To test the therapeutic potential of this approach, we delivered the Scn1a-dCas9 activation system to DS pups using adeno-associated viruses. Parvalbumin interneurons recovered their firing ability, and febrile seizures were significantly attenuated. Our results pave the way for exploiting dCas9-based gene activation as an effective and targeted approach to DS and other disorders resulting from altered gene dosage.


Assuntos
Proteína 9 Associada à CRISPR/genética , Epilepsias Mioclônicas/terapia , Terapia Genética/métodos , Interneurônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/terapia , Ativação Transcricional , Potenciais de Ação , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Resultado do Tratamento
11.
Hum Mol Genet ; 27(5): 761-779, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29281027

RESUMO

P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.


Assuntos
Marcação de Genes/métodos , Vetores Genéticos , Retina/fisiologia , Degeneração Retiniana/terapia , Rodopsina/genética , Alelos , Animais , Sistemas CRISPR-Cas , Eletroporação/métodos , Fibroblastos , Terapia Genética/métodos , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Mutação , RNA Guia de Cinetoplastídeos , Retina/patologia , Degeneração Retiniana/genética
12.
Stem Cells ; 37(7): 973-987, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30942926

RESUMO

Mesenchymal stem cells (MSCs) are well established to have promising therapeutic properties. TNF-stimulated gene-6 (TSG-6), a potent tissue-protective and anti-inflammatory factor, has been demonstrated to be responsible for a significant part of the tissue-protecting properties mediated by MSCs. Nevertheless, current knowledge about the biological function of TSG-6 in MSCs is limited. Here, we demonstrated that TSG-6 is a crucial factor that influences many functional properties of MSCs. The transcriptomic sequencing analysis of wild-type (WT) and TSG-6-/- -MSCs shows that the loss of TSG-6 expression leads to the perturbation of several transcription factors, cytokines, and other key biological pathways. TSG-6-/- -MSCs appeared morphologically different with dissimilar cytoskeleton organization, significantly reduced size of extracellular vesicles, decreased cell proliferative rate, and loss of differentiation abilities compared with the WT cells. These cellular effects may be due to TSG-6-mediated changes in the extracellular matrix (ECM) environment. The supplementation of ECM with exogenous TSG-6, in fact, rescued cell proliferation and changes in morphology. Importantly, TSG-6-deficient MSCs displayed an increased capacity to release interleukin-6 conferring pro-inflammatory and pro-tumorigenic properties to the MSCs. Overall, our data provide strong evidence that TSG-6 is crucial for the maintenance of stemness and other biological properties of murine MSCs.


Assuntos
Moléculas de Adesão Celular/genética , Transformação Celular Neoplásica/genética , Interleucina-6/genética , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Animais , Comunicação Autócrina/genética , Moléculas de Adesão Celular/deficiência , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Citocinas/genética , Citocinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/genética , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456361

RESUMO

In northern Italy, biomass burning-derived (BB) particles and diesel exhaust particles (DEP) are considered the most significant contributors to ultrafine particle (UFP) emission. However, a comparison between their impact on different brain regions was not investigated until now. Therefore, male BALB/c mice were treated with a single or three consecutive intratracheal instillations using 50 µg of UFPs in 100 µL of isotonic saline solution or 100 µL of isotonic saline solution alone, and brains were collected and analyzed. Proteins related to oxidative stress and inflammation, as well as Alzheimer's disease markers, were examined in the hippocampus, cerebellum, and the rest of the brain (RoB). Histopathological examination of the brain was also performed. Moreover, correlations among different brain, pulmonary, and cardiovascular markers were performed, allowing us to identify the potentially most stressful UFP source. Although both acute exposures induced inflammatory pathways in mouse brain, only DEP showed strong oxidative stress. The sub-acute exposure also induced the modulation of APP and BACE1 protein levels for both UFPs. We observed that DEP exposure is more harmful than BB, and this different response could be explained by this UFP's different chemical composition and reactivity.


Assuntos
Poluição do Ar/efeitos adversos , Encéfalo/efeitos dos fármacos , Inflamação , Doenças Neurodegenerativas/induzido quimicamente , Estresse Oxidativo , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Material Particulado/toxicidade , Emissões de Veículos/toxicidade
14.
Dev Biol ; 434(2): 231-248, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305158

RESUMO

During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/embriologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neurais/metabolismo , Organogênese/efeitos dos fármacos , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/genética , Camundongos , Células-Tronco Neurais/citologia , Organogênese/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
15.
Int J Cancer ; 145(7): 1913-1920, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30889293

RESUMO

Colorectal cancer (CRC) is one of the most malignant tumors worldwide. Stromal cells residing in the tumor microenvironment strongly contribute to cancer progression through their crosstalk with cancer cells and extracellular matrix. Here we provide the first evidence that CRC-associated lymphatic endothelium displays a distinct matrisome-associated transcriptomic signature, which distinguishes them from healthy intestinal lymphatics. We also demonstrate that CRC-associated human intestinal lymphatic endothelial cells regulate tumor cell growth via growth differentiation factor 11, a soluble matrisome component which in CRC patients was found to be associated with tumor progression. Our data provide new insights into lymphatic contribution to CRC growth, aside from their conventional role as conduits of metastasis.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Neoplasias Colorretais/genética , Endotélio Linfático/citologia , Matriz Extracelular/genética , Fatores de Diferenciação de Crescimento/genética , Animais , Células CACO-2 , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Progressão da Doença , Células Endoteliais/química , Células Endoteliais/citologia , Endotélio Linfático/química , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Microambiente Tumoral
16.
Haematologica ; 104(9): 1789-1797, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30819912

RESUMO

Despite the advent of tyrosine kinase inhibitors, a proportion of chronic myeloid leukemia patients in chronic phase fail to respond to imatinib or to second-generation inhibitors and progress to blast crisis. Until now, improvements in the understanding of the molecular mechanisms responsible for chronic myeloid leukemia transformation from chronic phase to the aggressive blast crisis remain limited. Here we present a large parallel sequencing analysis of 10 blast crisis samples and of the corresponding autologous chronic phase controls that reveals, for the first time, recurrent mutations affecting the ubiquitin-conjugating enzyme E2A gene (UBE2A, formerly RAD6A). Additional analyses on a cohort of 24 blast crisis, 41 chronic phase as well as 40 acute myeloid leukemia and 38 atypical chronic myeloid leukemia patients at onset confirmed that UBE2A mutations are specifically acquired during chronic myeloid leukemia progression, with a frequency of 16.7% in advanced phases. In vitro studies show that the mutations here described cause a decrease in UBE2A activity, leading to an impairment of myeloid differentiation in chronic myeloid leukemia cells.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Mutação , Enzimas de Conjugação de Ubiquitina/genética , Crise Blástica/genética , Diferenciação Celular , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Células HEK293 , Humanos , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/patologia , Masculino , Inibidores de Proteínas Quinases/farmacologia , Análise de Sequência de DNA , Sequenciamento do Exoma
17.
Int J Mol Sci ; 20(11)2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181746

RESUMO

Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 µg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.


Assuntos
Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Ciclo-Oxigenase 2/análise , Citocromo P-450 CYP1B1/análise , Proteínas de Choque Térmico HSP70/análise , Heme Oxigenase-1/análise , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/análise
18.
Gastroenterology ; 153(5): 1363-1377.e6, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28827082

RESUMO

BACKGROUND & AIMS: Alterations in signaling pathways that regulate resolution of inflammation (resolving pathways) contribute to pathogenesis of ulcerative colitis (UC). The resolution process is regulated by lipid mediators, such as those derived from the ω-3 docosahexaenoic acid (DHA), whose esterified form is transported by the major facilitator superfamily domain containing 2A (MFSD2A) through the endothelium of brain, retina, and placenta. We investigated if and how MFSD2A regulates lipid metabolism of gut endothelial cells to promote resolution of intestinal inflammation. METHODS: We performed lipidomic and functional analyses of MFSD2A in mucosal biopsies and primary human intestinal microvascular endothelial cells (HIMECs) isolated from surgical specimens from patients with active, resolving UC and healthy individuals without UC (controls). MFSD2A was knocked down in HIMECs with small hairpin RNAs or overexpressed from a lentiviral vector. Human circulating endothelial progenitor cells that overexpress MFSD2A were transferred to CD1 nude mice with dextran sodium sulfate-induced colitis, with or without oral administration of DHA. RESULTS: Colonic biopsies from patients with UC had reduced levels of inflammation-resolving DHA-derived epoxy metabolites compared to healthy colon tissues or tissues with resolution of inflammation. Production of these metabolites by HIMECs required MFSD2A, which is required for DHA retention and metabolism in the gut vasculature. In mice with colitis, transplanted endothelial progenitor cells that overexpressed MFSD2A not only localized to the inflamed mucosa but also restored the ability of the endothelium to resolve intestinal inflammation, compared with mice with colitis that did not receive MFSD2A-overexpressing endothelial progenitors. CONCLUSIONS: Levels of DHA-derived epoxides are lower in colon tissues from patients with UC than healthy and resolving mucosa. Production of these metabolites by gut endothelium requires MFSD2A; endothelial progenitor cells that overexpress MFSD2A reduce colitis in mice. This pathway might be induced to resolve intestinal inflammation in patients with colitis.


Assuntos
Colite/prevenção & controle , Colo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Células Progenitoras Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/patologia , Células Progenitoras Endoteliais/transplante , Compostos de Epóxi/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos Nus , Oxilipinas/metabolismo , Interferência de RNA , Transdução de Sinais , Simportadores , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Supressoras de Tumor/genética
19.
Cereb Cortex ; 27(6): 3378-3396, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27600842

RESUMO

The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways.


Assuntos
Diferenciação Celular/genética , Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Proteínas com Domínio T/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/genética , Movimento Celular/genética , Polaridade Celular/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/genética , Hipocampo/citologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
20.
Comput Struct Biotechnol J ; 23: 626-637, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38274997

RESUMO

Gut microbiota is recognized nowadays as one of the key players in the development of several gastro-intestinal diseases. The first studies focused mainly on healthy subjects with staining of main bacterial species via culture-based techniques. Subsequently, lots of studies tried to focus on principal esophageal disease enlarged the knowledge on esophageal microbial environment and its role in pathogenesis. Gastro Esophageal Reflux Disease (GERD), the most widespread esophageal condition, seems related to a certain degree of mucosal inflammation, via interleukin (IL) 8 potentially enhanced by bacterial components, lipopolysaccharide (LPS) above all. Gram- bacteria, producing LPS), such as Campylobacter genus, have been found associated with GERD. Barrett esophagus (BE) seems characterized by a Gram- and microaerophils-shaped microbiota. Esophageal cancer (EC) development leads to an overturn in the esophageal environment with the shift from an oral-like microbiome to a prevalently low-abundant and low-diverse Gram--shaped microbiome. Although underinvestigated, also changes in the esophageal microbiome are associated with rare chronic inflammatory or neuropathic disease pathogenesis. The paucity of knowledge about the microbiota-driven mechanisms in esophageal disease pathogenesis is mainly due to the scarce sensitivity of sequencing technology and culture methods applied so far to study commensals in the esophagus. However, the recent advances in molecular techniques, especially with the advent of non-culture-based genomic sequencing tools and the implementation of multi-omics approaches, have revolutionized the microbiome field, with promises of implementing the current knowledge, discovering more mechanisms underneath, and giving insights into the development of novel therapies aimed to re-establish the microbial equilibrium for ameliorating esophageal diseases..

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA