RESUMO
Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.
Assuntos
Antioxidantes , Fermentação , Chá de Kombucha , Humanos , Antioxidantes/farmacologia , Prebióticos , Probióticos , Anti-Infecciosos/farmacologia , Hipoglicemiantes/farmacologia , Leveduras , Chá , BebidasRESUMO
Heavy metals and mycotoxins in foodstuffs are one of the major concerns of our world nowadays. Food decontamination with the help of microbial biomass is a cheap, easy, efficient and green method known as bioremoval. Probiotics are able to reduce the availability of heavy metals and toxins in food products. The purpose of this review is to summarize the probiotics and potential probiotics' interesting role in food bio-decontamination. After a brief glance at the definition of potential probiotic strains with bioremoval ability, LABs (lactic acid bacteria) are described as they are the most important groups of probiotics. After that, the role of the main probiotic and potential probiotic strains (Bacillus, Lactobacillus, Lactococcus, Enterococcus, Bifidobacterium, Pediococcus, Propionibacterium, Streptococcus and Saccharomyces cerevisiae) for heavy metals and mycotoxins bioremoval are described. Additionally, the bioremoval mechanism and the effect of some factors in bioremoval efficiency are explained. Finally, the investigations about probiotic and contaminant stability are mentioned. It is worth mentioning that this review article can be exerted in different food and beverage industries to eliminate the heavy metals and mycotoxins in foodstuffs.
Assuntos
Metais Pesados , Micotoxinas , Probióticos , Bifidobacterium , LactobacillusRESUMO
This study is aimed at measuring nitrate levels in different vegetables from Tehran's markets that are consumed raw and fresh and to evaluate human health risk. Basil, parsley, radish leaves, cress, leek, radish, spring onion were randomly collected from local markets and the nitrate content was analysed by spectrophotometry. Average nitrate levels in the samples were 40.1, 45.2, 50.0, 51.8, 55.4, 90.2 and 110 mg kg-1 in parsley, leek, basil, radish leaves, cress, radish and spring onion, respectively. The average content in all samples was below Iranian standard limits. Tuber vegetables had significantly higher nitrate content than (green) leafy vegetables.
Assuntos
Nitratos , Verduras , Irã (Geográfico) , Verduras/química , Nitratos/análise , Humanos , Contaminação de Alimentos/análise , Folhas de Planta/químicaRESUMO
Food contamination such as toxins and heavy metals has been increasing in the last few decades as a result of industrialization in general and as part of food production in particular. Application of microorganisms in toxins and heavy metals bio-removal has been documented and applied as a favorable decontamination approach due to being environmentally friendly, reasonably simple, and economically feasible. Lactobacilli have been proposed and applied as a beneficial biologic sorbent for toxins and heavy metals in processes of reducing their hazardous bio-availability. The purpose of this review is to summarize the known role of Lactobacillus bacterial species in food bio-decontamination processes. After a quick glimpse of the worthy properties of lactobacilli, their cell wall structure is mentioned. Then the potential role of Lactobacillus strains for mycotoxins (aflatoxins, patulin, ochratoxin A, fumonisins, zearalenone, cyanotoxins, and trichothecenes) and heavy metals (lead, arsenic copper, mercury, cadmium, zinc, aluminum, chromium, and iron) bio-removal were described. In addition, the role of various factors in removal yield and the decontamination mechanism were explained. Finally, the lactobacilli-contaminant stability, in vivo studies, and being a friend or foe of Lactobacillus bacteria are discussed.
Assuntos
Metais Pesados , Micotoxinas , Descontaminação , Contaminação de Alimentos , LactobacillusRESUMO
The food and water contamination with heavy metals is increasing due to the environmental pollutions. Lead and cadmium are the toxic heavy metals for humans that can be found in air, soil, water, and even food. Lactic acid bacteria have the ability to remove and diminish the level of heavy metals. In this study, Lactobacillus acidophilus was used to remove lead and cadmium in milk and the capability of this valuable bacterium in biosorption of these metals low concentrations (µg/L or ppb) in milk was evaluated. First, the variables on lead and cadmium removal by this bacterium have been studied by Plackett-Burman design. Then, the bioremoval process was optimized and the three main factors, the bacterium concentration, contact time, and the initial heavy metal concentration were chosen by using a central composite design. The optimum lead and cadmium bioremoval yield of 80% and 75% were observed, respectively, at 1 × 1012 CFU of L. acidophilus in milk at the 4th day and the initial ion concentration of 100 µg/L. The 3D plots analysis showed the interaction effects on metal biosorption. This study showed that L. acidophilus is a natural effective biosorbent for lead and cadmium removal from milk.
RESUMO
Heavy metals are natural elements in the Earth's crust that can enter human food through industrial or agricultural processing, in the form of fertilizers and pesticides. These elements are not biodegradable. Some heavy metals are known as pollutants and are toxic, and their bioaccumulation in plant and animal tissues can cause undesirable effects for humans; therefore, their amount in water and food should always be under control. The aim of this study is to investigate the conditions for the bioremediation of heavy metals in foods. Various physical, chemical, and biological methods have been used to reduce the heavy metal content in the environment. During the last decades, bioremediation methods using plants and microorganisms have created interest to researchers for their advantages such as being more specific and environmentally friendly. The main pollutant elements in foods and beverages are lead, cadmium, arsenic, and mercury, which have their own permissible limits. Among the microorganisms that are capable of bioremediation of heavy metals, Saccharomyces cerevisiae is an interesting choice for its special characteristics and being safe for humans, which make it quite common and useful in the food industry. Its mass production as the byproduct of the fermentation industry and the low cost of culture media are the other advantages. The ability of this yeast to remove an individual separated element has also been widely investigated. In countries with high heavy metal pollution in wheat, the use of S. cerevisiae is a native solution for overcoming the problem of solution. This article summarizes the main conditions for heavy metal absorption by S. cerevisiae.