Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gastroenterology ; 150(5): 1196-1207, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26836588

RESUMO

BACKGROUND & AIMS: Severe forms of inflammatory bowel disease (IBD) that develop in very young children can be caused by variants in a single gene. We performed whole-exome sequence (WES) analysis to identify genetic factors that might cause granulomatous colitis and severe perianal disease, with recurrent bacterial and viral infections, in an infant of consanguineous parents. METHODS: We performed targeted WES analysis of DNA collected from the patient and her parents. We validated our findings by a similar analysis of DNA from 150 patients with very-early-onset IBD not associated with known genetic factors analyzed in Toronto, Oxford, and Munich. We compared gene expression signatures in inflamed vs noninflamed intestinal and rectal tissues collected from patients with treatment-resistant Crohn's disease who participated in a trial of ustekinumab. We performed functional studies of identified variants in primary cells from patients and cell culture. RESULTS: We identified a homozygous variant in the tripartite motif containing 22 gene (TRIM22) of the patient, as well as in 2 patients with a disease similar phenotype. Functional studies showed that the variant disrupted the ability of TRIM22 to regulate nucleotide binding oligomerization domain containing 2 (NOD2)-dependent activation of interferon-beta signaling and nuclear factor-κB. Computational studies demonstrated a correlation between the TRIM22-NOD2 network and signaling pathways and genetic factors associated very early onset and adult-onset IBD. TRIM22 is also associated with antiviral and mycobacterial effectors and markers of inflammation, such as fecal calprotectin, C-reactive protein, and Crohn's disease activity index scores. CONCLUSIONS: In WES and targeted exome sequence analyses of an infant with severe IBD characterized by granulomatous colitis and severe perianal disease, we identified a homozygous variant of TRIM22 that affects the ability of its product to regulate NOD2. Combined computational and functional studies showed that the TRIM22-NOD2 network regulates antiviral and antibacterial signaling pathways that contribute to inflammation. Further study of this network could lead to new disease markers and therapeutic targets for patients with very early and adult-onset IBD.


Assuntos
Doença de Crohn/genética , Variação Genética , Antígenos de Histocompatibilidade Menor/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Idade de Início , Austrália , Células Cultivadas , Biologia Computacional , Consanguinidade , Doença de Crohn/diagnóstico , Doença de Crohn/metabolismo , Doença de Crohn/terapia , Bases de Dados Genéticas , Inglaterra , Exoma , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Alemanha , Homozigoto , Humanos , Recém-Nascido , Antígenos de Histocompatibilidade Menor/metabolismo , Ontário , Linhagem , Fenótipo , Mapas de Interação de Proteínas , Proteínas Repressoras/metabolismo , Índice de Gravidade de Doença , Transfecção , Proteínas com Motivo Tripartido/metabolismo
2.
Gastroenterology ; 146(4): 1028-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24417819

RESUMO

BACKGROUND & AIMS: Very early onset inflammatory bowel diseases (VEOIBD), including infant disorders, are a diverse group of diseases found in children younger than 6 years of age. They have been associated with several gene variants. Our aim was to identify the genes that cause VEOIBD. METHODS: We performed whole exome sequencing of DNA from 1 infant with severe enterocolitis and her parents. Candidate gene mutations were validated in 40 pediatric patients and functional studies were carried out using intestinal samples and human intestinal cell lines. RESULTS: We identified compound heterozygote mutations in the Tetratricopeptide repeat domain 7 (TTC7A) gene in an infant from non-consanguineous parents with severe exfoliative apoptotic enterocolitis; we also detected TTC7A mutations in 2 unrelated families, each with 2 affected siblings. TTC7A interacts with EFR3 homolog B to regulate phosphatidylinositol 4-kinase at the plasma membrane. Functional studies demonstrated that TTC7A is expressed in human enterocytes. The mutations we identified in TTC7A result in either mislocalization or reduced expression of TTC7A. Phosphatidylinositol 4-kinase was found to co-immunoprecipitate with TTC7A; the identified TTC7A mutations reduced this binding. Knockdown of TTC7A in human intestinal-like cell lines reduced their adhesion, increased apoptosis, and decreased production of phosphatidylinositol 4-phosphate. CONCLUSIONS: In a genetic analysis, we identified loss of function mutations in TTC7A in 5 infants with VEOIBD. Functional studies demonstrated that the mutations cause defects in enterocytes and T cells that lead to severe apoptotic enterocolitis. Defects in the phosphatidylinositol 4-kinase-TTC7A-EFR3 homolog B pathway are involved in the pathogenesis of VEOIBD.


Assuntos
Doenças Inflamatórias Intestinais/genética , Mutação , Proteínas/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Idade de Início , Apoptose , Adesão Celular , Linhagem Celular , Pré-Escolar , Análise Mutacional de DNA , Enterocolite/genética , Enterócitos/metabolismo , Enterócitos/patologia , Exoma , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Recém-Nascido , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/terapia , Atresia Intestinal/genética , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Linhagem , Fenótipo , Prognóstico , Ligação Proteica , Proteínas/metabolismo , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Transfecção
3.
Reproduction ; 147(1): 1-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24088291

RESUMO

The mouse protein phosphatase gene Ppp1cc is essential for male fertility, with mutants displaying a failure in spermatogenesis including a widespread loss of post-meiotic germ cells and abnormalities in the mitochondrial sheath. This phenotype is hypothesized to be responsible for the loss of the testis-specific isoform PPP1CC2. To identify PPP1CC2-interacting proteins with a function in spermatogenesis, we carried out GST pull-down assays in mouse testis lysates. Amongst the identified candidate interactors was the testis-specific protein kinase TSSK1, which is also essential for male fertility. Subsequent interaction experiments confirmed the capability of PPP1CC2 to form a complex with TSSK1 mediated by the direct interaction of each with the kinase substrate protein TSKS. Interaction between PPP1CC2 and TSKS is mediated through an RVxF docking motif on the TSKS surface. Phosphoproteomic analysis of the mouse testis identified a novel serine phosphorylation site within the TSKS RVxF motif that appears to negatively regulate binding to PPP1CC2. Immunohistochemical analysis of TSSK1 and TSKS in the Ppp1cc mutant testis showed reduced accumulation to distinct cytoplasmic foci and other abnormalities in their distribution consistent with the loss of germ cells and seminiferous tubule disorganization observed in the Ppp1cc mutant phenotype. A comparison of Ppp1cc and Tssk1/2 knockout phenotypes via electron microscopy revealed similar abnormalities in the morphology of the mitochondrial sheath. These data demonstrate a novel kinase/phosphatase complex in the testis that could play a critical role in the completion of spermatogenesis.


Assuntos
Fosfoproteínas/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Testículo/metabolismo , Animais , Proteínas do Citoesqueleto , Masculino , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Fosforilação , Proteína Fosfatase 1/genética , Proteínas Serina-Treonina Quinases/genética , Espermatogênese/fisiologia
4.
Clin Transl Gastroenterol ; 5: e46, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24430113

RESUMO

OBJECTIVES: The NOS2 gene encodes for the inducible nitric oxide synthase (iNOS), responsible for nitric oxide (NO) production, which contributes to antimicrobial and antipathogenic activities. Higher levels of both iNOS and NO-induced damage have been observed in inflammatory bowel disease (IBD) patients. NOS2 may have a role in a specific subset of IBD patients with severe and/or extensive colitis. Therefore, the aim of this study is to examine the role of NOS2 in such a subset, very early onset IBD (VEO-IBD). METHODS: Seventeen tag single nucleotide polymorphisms (SNPs) in the NOS2 gene were successfully genotyped in VEO-IBD patients. Genetic associations were replicated in an independent VEO-IBD cohort. Functional analysis for iNOS activity was performed on the most significantly associated functional variant. RESULTS: The NOS2 rs2297518 SNP was found to be associated in VEO-IBD in two independent cohorts. Upon combined analysis, a coding variant (S608L) showed the strongest association with VEO-IBD (Pcombined=1.13 × 10(-6), OR (odds ratio)=3.398 (95% CI (confidence interval) 2.02-5.717)) as well as associations with VEO-Crohn's disease and VEO-ulcerative colitis (UC). This variant also showed an association with UC diagnosed between 11 and 17 years of age but not with adult-onset IBD (>17 years). B-cell lymphoblastoid cell lines genotyped for the risk variant as well as Henle-407 cells transfected with a plasmid construct with the risk variant showed higher NO production. Colonic biopsies of VEO-IBD patients showed higher immunohistochemical staining of nitrotyrosine, indicating more nitrosative stress and tissue damage. CONCLUSIONS: These studies suggest the importance of iNOS in genetic susceptibility to younger IBD presentation due to higher NO production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA