Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 57(Pt 2): 503-508, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596731

RESUMO

A systematic procedure is introduced for modeling charge-neutral non-polar surfaces of ionic minerals containing polyatomic anions. By integrating distance- and charge-based clustering to identify chemical species within the mineral bulk, our pipeline, PolyCleaver, renders a variety of theoretically viable surface terminations. As a demonstrative example, this approach was applied to forsterite (Mg2SiO4), unveiling a rich interface landscape based on interactions with formaldehyde, a relevant multifaceted molecule, and more particularly in prebiotic chemistry. This high-throughput method, going beyond techniques traditionally applied in the modeling of minerals, offers new insights into the potential catalytic properties of diverse surfaces, enabling a broader exploration of synthetic pathways in complex mineral systems.

2.
Dalton Trans ; 53(3): 1322-1335, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116737

RESUMO

Ion-pairing is a fundamental phenomenon that significantly influences phase-transfer catalysis. In this study, we conduct a comprehensive investigation of ion-pair interactions, aiming to establish a comprehensive understanding of their nature and implications. The study begins with the examination of polar ionic compounds to define the concept of an ion-pair in the context of phase-transfer catalysis. Subsequently, a diverse range of ion-pair catalyst models were explored to gain insight into the factors governing their interactions. Finally, the focus shifts towards the characterisation of real phase-transfer catalysts, bridging the gap between theoretical models and practical applications. Through a combination of computational approaches and theoretical analysis, this work provides valuable insight into the nature of ion-pair interactions within phase-transfer catalysis fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA