Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 096002, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489633

RESUMO

We report the existence of dissipationless currents in bilayer superconductors above the critical temperature T_{c}, assuming that the superconducting phase transition is dominated by phase fluctuations. Using a semiclassical U(1) lattice gauge theory, we show that thermal fluctuations cause a transition from the superconducting state at low temperature to a resistive state above T_{c}, accompanied by the proliferation of unbound vortices. Remarkably, while the proliferation of vortex excitations causes dissipation of homogeneous in-plane currents, we find that counterflow currents, flowing in the opposite direction within a bilayer, remain dissipationless. The presence of a dissipationless current channel above T_{c} is attributed to the inhibition of vortex motion by local superconducting coherence within a single bilayer, in the presence of counterflow currents. Our theory presents a possible scenario for the pseudogap phase in bilayer cuprates.

2.
Phys Rev Lett ; 130(16): 163603, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154637

RESUMO

We demonstrate the formation of a condensate in a dark state of momentum states, in a pumped and shaken cavity-BEC system. The system consists of an ultracold quantum gas in a high-finesse cavity, which is pumped transversely by a phase-modulated laser. This phase-modulated pumping couples the atomic ground state to a superposition of excited momentum states, which decouples from the cavity field. We demonstrate how to achieve condensation in this state, supported by time-of-flight and photon emission measurements. With this, we show that the dark state concept provides a general approach to efficiently prepare complex many-body states in an open quantum system.

3.
Phys Rev Lett ; 127(25): 253601, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029416

RESUMO

A periodically driven open three-level Dicke model is realized by resonantly shaking the pump field in an atom-cavity system. As an unambiguous signature, we demonstrate the emergence of a dynamical phase, in which the atoms periodically localize between the antinodes of the pump lattice, associated with an oscillating net momentum along the pump axis. We observe this dynamical phase through the periodic switching of the relative phase between the pump and cavity fields at a small fraction of the driving frequency, suggesting that it exhibits a time crystalline character.

4.
Phys Rev Lett ; 127(4): 043602, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355967

RESUMO

We present the first experimental realization of a time crystal stabilized by dissipation. The central signature in our implementation in a driven open atom-cavity system is a period doubled switching between distinct checkerboard density wave patterns, induced by the interplay between controlled cavity dissipation, cavity-mediated interactions, and external driving. We demonstrate the robustness of this dynamical phase against system parameter changes and temporal perturbations of the driving.

5.
Phys Rev Lett ; 121(15): 153001, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362802

RESUMO

We demonstrate dynamical control of the superradiant transition of cavity-BEC system via periodic driving of the pump laser. We show that the dominant density wave order of the superradiant state can be suppressed, and that the subdominant competing order of Bose-Einstein condensation emerges in the steady state. Furthermore, we show that additional, nonequilibrium density wave orders, which do not exist in equilibrium, can be stabilized dynamically. Finally, for strong driving, chaotic dynamics emerge.

6.
Phys Rev Lett ; 121(22): 220405, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547631

RESUMO

We demonstrate a light-induced formation of coherence in a cold atomic gas system that utilizes the suppression of a competing density wave (DW) order. The condensed atoms are placed in an optical cavity and pumped by an external optical standing wave, which induces a long-range interaction mediated by photon scattering and a resulting DW order above a critical pump strength. We show that the light-induced temporal modulation of the pump wave can suppress this DW order and restore coherence. This establishes a foundational principle of dynamical control of competing orders analogous to a hypothesized mechanism for light-induced superconductivity in high-T_{c} cuprates.

7.
Proc Natl Acad Sci U S A ; 112(11): 3290-5, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733892

RESUMO

The Dicke model with a weak dissipation channel is realized by coupling a Bose-Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp-Lieb-Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions.

8.
Phys Rev Lett ; 118(24): 240403, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665652

RESUMO

Topological defects in Bloch bands, such as Dirac points in graphene, and their resulting Berry phases play an important role for the electronic dynamics in solid state crystals. Such defects can arise in systems with a two-atomic basis due to the momentum-dependent coupling of the two sublattice states, which gives rise to a pseudospin texture. The topological defects appear as vortices in the azimuthal phase of this pseudospin texture. Here, we demonstrate a complete measurement of the azimuthal phase in a hexagonal optical lattice employing a versatile method based on time-of-flight imaging after off-resonant lattice modulation. Furthermore, we map out the merging transition of the two Dirac points induced by beam imbalance. Our work paves the way to accessing geometric properties in optical lattices also with spin-orbit coupling and interactions.

9.
Phys Rev Lett ; 117(22): 227001, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925717

RESUMO

Motivated by recent pump-probe experiments indicating enhanced coherent c-axis transport in underdoped YBCO, we study Josephson junctions periodically driven by optical pulses. We propose a mechanism for this observation by demonstrating that a parametrically driven Josephson junction shows an enhanced imaginary part of the low-frequency conductivity when the driving frequency is above the plasma frequency, implying an effectively enhanced Josephson coupling. We generalize this analysis to a bilayer system of Josephson junctions modeling YBCO. Again, the Josephson coupling is enhanced when the pump frequency is blue detuned to either of the two plasma frequencies of the material. We show that the emergent driven state is a genuine, nonequilibrium superconducting state, in which equilibrium relations between the Josephson coupling, current fluctuations, and the critical current no longer hold.

10.
Phys Rev Lett ; 114(9): 095301, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793823

RESUMO

We map out the critical velocity in the crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer superfluidity with ultracold ^{6}Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity v_{c}. In the same samples, we measure the speed of sound v_{s} by exciting density waves and compare the results to the measured values of v_{c}. We perform numerical simulations in the Bose-Einstein condensation regime and find very good agreement, validating the approach. In the strongly correlated regime our measurements of v_{c} provide a testing ground for theoretical approaches.

11.
Science ; 382(6669): 443-447, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883542

RESUMO

The understanding of nonequilibrium dynamics in many-body quantum systems is a fundamental issue in statistical physics. Experiments that probe universal properties of these systems can address such foundational questions. In this study, we report the measurement of universal dynamics triggered by a quench from the superfluid to normal phase across the Berezinskii-Kosterlitz-Thouless transition in a two-dimensional (2D) Bose gas. We reduced the density by splitting the 2D gas in two, realizing a quench across the critical point. The subsequent relaxation dynamics were probed with matter-wave interferometry to measure the local phase fluctuations. We show that the time evolution of both the phase correlation function and vortex density obeys universal scaling laws. This conclusion is supported by classical-field simulations and interpreted by means of real-time renormalization group theory.

12.
Science ; 377(6606): 670-673, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35679353

RESUMO

Time crystals are classified as discrete or continuous depending on whether they spontaneously break discrete or continuous time translation symmetry. Although discrete time crystals have been extensively studied in periodically driven systems, the experimental realization of a continuous time crystal is still pending. We report the observation of a limit cycle phase in a continuously pumped dissipative atom-cavity system that is characterized by emergent oscillations in the intracavity photon number. The phase of the oscillation was found to be random for different realizations, and hence, this dynamical many-body state breaks continuous time translation symmetry spontaneously. Furthermore, the observed limit cycles are robust against temporal perturbations and therefore demonstrate the realization of a continuous time crystal.

13.
Nat Commun ; 12(1): 7074, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873169

RESUMO

Second sound is an entropy wave which propagates in the superfluid component of a quantum liquid. Because it is an entropy wave, it probes the thermodynamic properties of the quantum liquid. Here, we study second sound propagation for a large range of interaction strengths within the crossover between a Bose-Einstein condensate (BEC) and the Bardeen-Cooper-Schrieffer (BCS) superfluid, extending previous work at unitarity. In particular, we investigate the strongly-interacting regime where currently theoretical predictions only exist in terms of an interpolation in the crossover. Working with a quantum gas of ultracold fermionic 6Li atoms with tunable interactions, we show that the second sound speed varies only slightly in the crossover regime. By varying the excitation procedure, we gain deeper insight on sound propagation. We compare our measurement results with classical-field simulations, which help with the interpretation of our experiments.

14.
Science ; 369(6499): 89-91, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32631891

RESUMO

The role of reduced dimensionality in high-temperature superconductors is still under debate. Recently, ultracold atoms have emerged as an ideal model system to study such strongly correlated two-dimensional (2D) systems. Here, we report on the realization of a Josephson junction in an ultracold 2D Fermi gas. We measure the frequency of Josephson oscillations as a function of the phase difference across the junction and find excellent agreement with the sinusoidal current phase relation of an ideal Josephson junction. Furthermore, we determine the critical current of our junction in the crossover from tightly bound molecules to weakly bound Cooper pairs. Our measurements clearly demonstrate phase coherence and provide strong evidence for superfluidity in a strongly interacting 2D Fermi gas.

15.
Nat Commun ; 8: 14696, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272466

RESUMO

Cold atoms coupled to photonic crystals constitute an exciting platform for exploring quantum many-body physics. For example, such systems offer the potential to realize strong photon-mediated forces between atoms, which depend on the atomic internal (spin) states, and where both the motional and spin degrees of freedom can exhibit long coherence times. An intriguing question then is whether exotic phases could arise, wherein crystalline or other spatial patterns and spin correlations are fundamentally tied together, an effect that is atypical in condensed matter systems. Here, we analyse one realistic model Hamiltonian in detail. We show that this previously unexplored system exhibits a rich phase diagram of emergent orders, including spatially dimerized spin-entangled pairs, a fluid of composite particles comprised of joint spin-phonon excitations, phonon-induced Néel ordering, and a fractional magnetization plateau associated with trimer formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA