Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Microbiol ; 101(6): 1039-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27301340

RESUMO

Natural transformation is a potent driver for genetic diversification in bacterial populations. It involves exogenous DNA binding, uptake, transport and internalization into the cytoplasm, where DNA can be processed and integrated into the host chromosome. Direct visualisation of transforming DNA (tDNA) has been limited to its binding to the surface or, in the case of Gram-negative species, to its entrance into the periplasm. We present here for the first time the direct visualisation of tDNA entering the bacterial cytoplasm. We used as a model the Gram-negative pathogen Helicobacter pylori, characterised by a large intraspecies variability that results from high mutation rates and efficient horizontal gene transfer. Using fluorescently labelled DNA, we followed for up to 3 h the fate of tDNA foci formed in the periplasm and eventually internalised into the cytoplasm. By tracking at the single cell level the expression of a fluorescent protein coded by the tDNA, we show that up to 50% of the cells express the transforming phenotype. The overall transformation process in H. pylori, from tDNA uptake to expression of the recombinant gene, can take place in less than 1 h, without requiring a growth arrest, and prior to the replication of the chromosome.


Assuntos
DNA Bacteriano/genética , Helicobacter pylori/genética , Transformação Bacteriana/genética , DNA Bacteriano/metabolismo , Expressão Gênica , Transferência Genética Horizontal , Helicobacter pylori/metabolismo
2.
PLoS Genet ; 4(8): e1000146, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18670631

RESUMO

The generation of a RecA filament on single-stranded DNA is a critical step in homologous recombination. Two main pathways leading to the formation of the nucleofilament have been identified in bacteria, based on the protein complexes mediating RecA loading: RecBCD (AddAB) and RecFOR. Many bacterial species seem to lack some of the components involved in these complexes. The current annotation of the Helicobacter pylori genome suggests that this highly diverse bacterial pathogen has a reduced set of recombination mediator proteins. While it is now clear that homologous recombination plays a critical role in generating H. pylori diversity by allowing genomic DNA rearrangements and integration through transformation of exogenous DNA into the chromosome, no complete mediator complex is deduced from the sequence of its genome. Here we show by bioinformatics analysis the presence of a RecO remote orthologue that allowed the identification of a new set of RecO proteins present in all bacterial species where a RecR but not RecO was previously identified. HpRecO shares less than 15% identity with previously characterized homologues. Genetic dissection of recombination pathways shows that this novel RecO and the remote RecB homologue present in H. pylori are functional in repair and in RecA-dependent intrachromosomal recombination, defining two initiation pathways with little overlap. We found, however, that neither RecOR nor RecB contributes to transformation, suggesting the presence of a third, specialized, RecA-dependent pathway responsible for the integration of transforming DNA into the chromosome of this naturally competent bacteria. These results provide insight into the mechanisms that this successful pathogen uses to generate genetic diversity and adapt to changing environments and new hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Recombinação Genética , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Reparo do DNA , Helicobacter pylori/química , Helicobacter pylori/metabolismo , Modelos Moleculares , Família Multigênica , Filogenia , Transformação Bacteriana
3.
Sci Total Environ ; 753: 141722, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207457

RESUMO

Despite the richness of data collected on pesticide concentrations in ambient air in France, knowledge on this topic remains partial and heterogeneous in the absence of specific regulations. The population exposure remains thus difficult to estimate; therefore it was necessary to define modalities for implementing national monitoring of pesticides in ambient air in metropolitan France and in the overseas territories. The objective of this work was to identify which active substances (a.s.) have to be monitored in priority. As part of a collective expertise, a group of multidisciplinary experts has developed a method to rank active substances authorised as plant protection products, biocides and antiparasitic agents, which were available on the French market in 2015. A 3-steps approach has been developed. The first step consisted of a theoretical approach based on a hierarchy of substances according to four criteria: (a) national uses, (b) emission potential to the air, (c) persistence in the air, and (d) chronic toxicity. The three first criteria give information on their potential to be present in the atmosphere, and the fourth criterion allows to consider their potential of hazard. The second step was an observational approach based on existing database on pesticide air measurements in France. In the third step, both approaches were combined using decision trees to select priority pesticides. Among the 1316 a.s. first identified from the EU Pesticides database, 90 were selected, among which 43 required metrological and/or analytical development. The experts recommended confirming the relevance of performing a longer term monitoring of these a. s. after a one-year exploratory campaign. The proposed method is reproduceable, transparent, easy to update (e.g. in the light of a change in product authorization), and can be adapted to other agricultural and geographical conditions, and objectives (e.g. monitoring of the ecotoxicological effects of pesticides).

4.
ISME J ; 14(3): 771-787, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31827247

RESUMO

Despite an overall temporal stability in time of the human gut microbiota at the phylum level, strong variations in species abundance have been observed. We are far from a clear understanding of what promotes or disrupts the stability of microbiome communities. Environmental factors, like food or antibiotic use, modify the gut microbiota composition, but their overall impacts remain relatively low. Phages, the viruses that infect bacteria, might constitute important factors explaining temporal variations in species abundance. Gut bacteria harbour numerous prophages, or dormant viruses, which can evolve to become ultravirulent phage mutants, potentially leading to important bacterial death. Whether such phenomenon occurs in the mammal's microbiota has been largely unexplored. Here we studied temperate phage-bacteria coevolution in gnotoxenic mice colonised with Roseburia intestinalis, a dominant symbiont of the human gut microbiota, and Escherichia coli, a sub-dominant member of the same microbiota. We show that R. intestinalis L1-82 harbours two active prophages, Jekyll and Shimadzu. We observed the systematic evolution in mice of ultravirulent Shimadzu phage mutants, which led to a collapse of R. intestinalis population. In a second step, phage infection drove the fast counter-evolution of host phage resistance mainly through phage-derived spacer acquisition in a clustered regularly interspaced short palindromic repeats array. Alternatively, phage resistance was conferred by a prophage originating from an ultravirulent phage with a restored ability to lysogenize. Our results demonstrate that prophages are a potential source of ultravirulent phages that can successfully infect most of the susceptible bacteria. This suggests that prophages can play important roles in the short-term temporal variations observed in the composition of the gut microbiota.


Assuntos
Clostridiales/genética , Clostridiales/virologia , Microbioma Gastrointestinal , Camundongos/microbiologia , Camundongos/virologia , Prófagos/fisiologia , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fezes/microbiologia , Feminino , Humanos , Lisogenia , Camundongos Endogâmicos C3H , Prófagos/genética , Prófagos/isolamento & purificação
5.
Nat Commun ; 11(1): 378, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953385

RESUMO

Bacteriophages constitute an important part of the human gut microbiota, but their impact on this community is largely unknown. Here, we cultivate temperate phages produced by 900 E. coli strains isolated from 648 fecal samples from 1-year-old children and obtain coliphages directly from the viral fraction of the same fecal samples. We find that 63% of strains hosted phages, while 24% of the viromes contain phages targeting E. coli. 150 of these phages, half recovered from strain supernatants, half from virome (73% temperate and 27% virulent) were tested for their host range on 75 E. coli strains isolated from the same cohort. Temperate phages barely infected the gut strains, whereas virulent phages killed up to 68% of them. We conclude that in fecal samples from children, temperate coliphages dominate, while virulent ones have greater infectivity and broader host range, likely playing a role in gut microbiota dynamics.


Assuntos
Colífagos/fisiologia , Escherichia coli/virologia , Fezes/virologia , Proteínas de Transporte , Colífagos/classificação , Colífagos/genética , Colífagos/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal , Genoma Viral , Especificidade de Hospedeiro , Humanos , Lactente , Lisogenia , Especificidade da Espécie
6.
Appl Environ Microbiol ; 74(7): 2095-102, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18245237

RESUMO

The Escherichia coli-Helicobacter pylori shuttle vector pHeL2 was modified to introduce the inducible LacI(q)-pTac system of E. coli, in which the promoters were engineered to be under the control of H. pylori RNA polymerase. The amiE gene promoter of H. pylori was taken to constitutively express the LacI(q) repressor. Expression of the reporter gene lacZ was driven by either pTac (pILL2150) or a modified version of the ureI gene promoter in which one or two LacI-binding sites and/or mutated nucleotides between the ribosomal binding site and the ATG start codon (pILL2153 and pILL2157) were introduced. Promoter activity was evaluated by measuring beta-galactosidase activity. pILL2150 is a tightly regulated expression system suitable for the analysis of genes with low-level expression, while pILL2157 is well adapted for the controlled expression of genes encoding recombinant proteins in H. pylori. To exemplify the usefulness of these tools, we constructed conditional mutants of the putative essential pbp1 and ftsI genes encoding penicillin-binding proteins 1 and 3 of H. pylori, respectively. Both genes were cloned into pILL2150 and introduced in the parental H. pylori strain N6. The chromosomally harbored pbp1 and ftsI genes were then inactivated by replacing them with a nonpolar kanamycin cassette. Inactivation was strictly dependent upon addition of isopropyl-beta-d-thiogalactopyranoside. Hence, we were able to construct the first conditional mutants of H. pylori. Finally, we demonstrated that following in vitro methylation of the recombinant plasmids, these could be introduced into a large variety of H. pylori isolates with different genetic backgrounds.


Assuntos
Genes Essenciais , Engenharia Genética , Vetores Genéticos , Helicobacter pylori/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/fisiologia , Dados de Sequência Molecular , Mutagênese , Regiões Promotoras Genéticas
7.
PLoS One ; 12(12): e0189049, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29206236

RESUMO

The Phospholipase D (PLD) superfamily of proteins includes a group of enzymes with nuclease activity on various nucleic acid substrates. Here, with the aim of better understanding the substrate specificity determinants in this subfamily, we have characterised the enzymatic activity and the crystal structure of NucT, a nuclease implicated in Helicobacter pylori purine salvage and natural transformation and compared them to those of its bacterial and mammalian homologues. NucT exhibits an endonuclease activity with a strong preference for single stranded nucleic acids substrates. We identified histidine124 as essential for the catalytic activity of the protein. Comparison of the NucT crystal structure at 1.58 Å resolution reported here with those of other members of the sub-family suggests that the specificity of NucT for single-stranded nucleic acids is provided by the width of a positively charged groove giving access to the catalytic site.


Assuntos
Endonucleases/metabolismo , Helicobacter pylori/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Endonucleases/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Sci Rep ; 7: 41495, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128333

RESUMO

Helicobacter pylori chronically colonises half of the world's human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H. pylori one of the most genetically diverse bacteria. We show here that transformation capacity is enhanced in strains defective for recN, extending previous work with other homologous recombination genes. However, inactivation of either mutY or polA has no effect on DNA transformation, suggesting that natural competence can be boosted in H. pylori by the persistence of DNA breaks but not by enhanced mutagenesis. The transformation efficiency of the different DNA repair impaired strains correlates with the number of transforming DNA foci formed on the cell surface and with the expression of comB8 and comB10 competence genes. Overexpression of the comB6-B10 operon is sufficient to increase the transformation capacity of a wild type strain, indicating that the ComB complex, present in the bacterial wall and essential for DNA uptake, can be a limiting factor for transformation efficiency.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Proteínas de Bactérias/genética , Dano ao DNA , Reparo do DNA , DNA Bacteriano/genética , Helicobacter pylori/metabolismo , Mutação/genética , Óperon/genética , Transformação Genética
9.
Cell Rep ; 17(1): 46-57, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681420

RESUMO

A better understanding of the impact of antibiotics on bacteria is required to increase the efficiency of antibiotic treatments and to slow the emergence of resistance. Using Escherichia coli, we examined how bacteria exposed to sublethal concentrations of ampicillin adjust gene expression patterns and metabolism to simultaneously deal with the antibiotic-induced damage and maintain rapid growth. We found that the treated cells increased energy production, as well as translation and macromolecular repair and protection. These responses are adaptive, because they confer increased survival not only to lethal ampicillin treatment but also to non-antibiotic lethal stresses. This robustness is modulated by nutrient availability. Because different antibiotics and other stressors induce the same set of responses, we propose that it constitutes a general core hormetic stress response. It is plausible that this response plays an important role in the robustness of bacteria exposed to antibiotic treatments and constant environmental fluctuations in natural environments.


Assuntos
Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hormese/genética , Alquilantes/farmacologia , Ampicilina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Oxidantes/farmacologia , Biossíntese de Proteínas , Proteoma/genética , Proteoma/metabolismo , Estresse Fisiológico/genética
10.
Org Lett ; 12(22): 5322-5, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20945892

RESUMO

Iron(III) chloride hexahydrate promotes a cascade of transformations on a Petasis condensation product that sets up the right dihydropyran precursors of valuable Relenza congeners.


Assuntos
Cloretos/química , Compostos Férricos/química , Zanamivir/análogos & derivados , Zanamivir/síntese química , Catálise , Estrutura Molecular , Zanamivir/química
11.
FEMS Microbiol Lett ; 311(1): 44-50, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20722738

RESUMO

Helicobacter pylori infects the stomach of about half of the world's human population, frequently causing chronic inflammation at the origin of several gastric pathologies. One of the most remarkable characteristics of the species is its remarkable genomic plasticity in which homologous recombination (HR) plays a critical role. Here, we analyzed the role of the H. pylori homologue of the AddAB recombination protein. Bioinformatics analysis of the proteins unveils the similarities and differences of the H. pylori AddAB complex with respect to the RecBCD and AddAB complexes from Escherichia coli and Bacillus subtilis, respectively. Helicobacter pylori mutants lacking functional addB or/and addA show the same level of sensitivity to DNA-damaging agents such as UV or irradiation and of deficiency in intrachromosomal RecA-dependent HR. Epistasis analyses of both DNA repair and HR phenotypes, using double and triple recombination mutants, demonstrate that, in H. pylori, AddAB and RecOR complexes define two separate presynaptic pathways with little functional overlap. However, neither of these complexes participates in the RecA-dependent process of transformation of these naturally competent bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Exodesoxirribonucleases/metabolismo , Helicobacter pylori/enzimologia , Recombinação Genética , Proteínas de Bactérias/genética , Exodesoxirribonucleases/genética , Helicobacter pylori/genética
12.
Genetics ; 184(1): 141-54, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19841092

RESUMO

Drosophila translational elongation factor-1gamma (EF1gamma) interacts in the yeast two-hybrid system with DOA, the LAMMER protein kinase of Drosophila. Analysis of mutant EF1gamma alleles reveals that the locus encodes a structurally conserved protein essential for both organismal and cellular survival. Although no genetic interactions were detected in combinations with mutations in EF1alpha, an EF1gamma allele enhanced mutant phenotypes of Doa alleles. A predicted LAMMER kinase phosphorylation site conserved near the C terminus of all EF1gamma orthologs is a phosphorylation site in vitro for both Drosophila DOA and tobacco PK12 LAMMER kinases. EF1gamma protein derived from Doa mutant flies migrates with altered mobility on SDS gels, consistent with it being an in vivo substrate of DOA kinase. However, the aberrant mobility appears to be due to a secondary protein modification, since the mobility of EF1gamma protein obtained from wild-type Drosophila is unaltered following treatment with several nonspecific phosphatases. Expression of a construct expressing a serine-to-alanine substitution in the LAMMER kinase phosphorylation site into the fly germline rescued null EF1gamma alleles but at reduced efficiency compared to a wild-type construct. Our data suggest that EF1gamma functions in vital cellular processes in addition to translational elongation and is a LAMMER kinase substrate in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sobrevivência Celular , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais/genética , Humanos , Larva/crescimento & desenvolvimento , Masculino , Movimento , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Fosforilação , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transgenes/genética
13.
J Bacteriol ; 188(21): 7464-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16936028

RESUMO

Chromosomal rearrangements and base substitutions contribute to the large intraspecies genetic diversity of Helicobacter pylori. Here we explored the base excision repair pathway for the highly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), a ubiquitous form of oxidized guanine. In most organisms, 8-oxoG is removed by a specific DNA glycosylase (Fpg in bacteria or OGG1 in eukaryotes). In the case where replication of the lesion yields an A/8-oxoG base pair, a second DNA glycosylase (MutY) can excise the adenine and thus avoid the fixation of the mutation in the next round of replication. In a genetic screen for H. pylori genes complementing the hypermutator phenotype of an Escherichia coli fpg mutY strain, open reading frame HP0142, a putative MutY coding gene, was isolated. Besides its capacity to complement E. coli mutY strains, HP0142 expression resulted in a strong adenine DNA glycosylase activity in E. coli mutY extracts. Consistently, the purified protein also exhibited such an activity. Inactivation of HP0142 in H. pylori resulted in an increase in spontaneous mutation frequencies. An Mg-dependent AP (abasic site) endonuclease activity, potentially allowing the processing of the abasic site resulting from H. pylori MutY activity, was detected in H. pylori cell extracts. Disruption of HP1526, a putative xth homolog, confirmed that this gene is responsible for the AP endonuclease activity. The lack of evidence for an Fpg/OGG1 functional homolog is also discussed.


Assuntos
Proteínas de Bactérias/fisiologia , Reparo do DNA , Guanina/análogos & derivados , Helicobacter pylori/genética , Mutação , Proteínas de Bactérias/genética , DNA Glicosilases/genética , DNA Glicosilases/isolamento & purificação , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/análise , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA-Formamidopirimidina Glicosilase/genética , DNA-Formamidopirimidina Glicosilase/isolamento & purificação , DNA-Formamidopirimidina Glicosilase/metabolismo , Escherichia coli/genética , Deleção de Genes , Genes Bacterianos , Teste de Complementação Genética , Guanina/metabolismo , Guanina/farmacologia , Helicobacter pylori/fisiologia , Mutagênese Insercional , Mutagênicos/farmacologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
14.
Mol Cell ; 17(1): 113-20, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15629722

RESUMO

In addition to their role in DNA repair, recombination events are associated with processes aimed at providing the genetic variability needed for adaptation and evolution of a population. In bacteria, recombination is involved in the appearance of new variants by allowing the incorporation of exogenous DNA or the reshuffling of endogenous sequences. Here we show that HpMutS2, a protein belonging to the MutS2 family in Helicobacter pylori, is not involved in mismatch repair but inhibits homologous and homeologous recombination. Disruption of HpmutS2 leads to an increased efficiency of exogenous DNA incorporation. HpMutS2 has a selective affinity for DNA structures mimicking recombination intermediates with no specificity for homoduplex DNA or mismatches. The purified protein has an ATPase activity stimulated by the same DNA structures. Finally, we show that HpMutS2 inhibits DNA strand exchange reactions in vitro. Thus, MutS2 proteins are candidates for controlling recombination and therefore genetic diversity in bacteria.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Helicobacter pylori/metabolismo , Recombinação Genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Pareamento Incorreto de Bases , Sítios de Ligação , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Helicobacter pylori/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA