Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(9): 7572-7581, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754261

RESUMO

Colorectal cancer (CRC) is a serious public health problem known to have a multifactorial etiology. The association between gut microbiota and CRC has been widely studied; however, the link between archaea and CRC has not been sufficiently studied. To investigate the involvement of archaea in colorectal carcinogenesis, we performed a metagenomic analysis of 68 formalin-embedded paraffin fixed tissues from tumoral (n = 33) and healthy mucosa (n = 35) collected from 35 CRC Tunisian patients. We used two DNA extraction methods: Generead DNA FFPE kit (Qiagen, Germantown, MD, USA) and Chelex. We then sequenced the samples using Illumina Miseq. Interestingly, DNA extraction exclusively using Chelex generated enough DNA for sequencing of all samples. After data filtering and processing, we reported the presence of archaeal sequences, which represented 0.33% of all the reads generated. In terms of abundance, we highlighted a depletion in methanogens and an enrichment in Halobacteria in the tumor tissues, while the correlation analysis revealed a significant association between the Halobacteria and the tumor mucosa (p < 0.05). We reported a strong correlation between Natrialba magadii, Sulfolobus acidocaldarius, and tumor tissues, and a weak correlation between Methanococcus voltae and healthy adjacent mucosa. Here, we demonstrated the feasibility of archaeome analysis from formol fixed paraffin-embedded (FFPE) tissues using simple protocols ranging from sampling to data analysis, and reported a significant association between Halobacteria and tumor tissues in Tunisian patients with CRC. The importance of our study is that it represents the first metagenomic analysis of Tunisian CRC patients' gut microbiome, which consists of sequencing DNA extracted from paired tumor-adjacent FFPE tissues collected from CRC patients. The detection of archaeal sequences in our samples confirms the feasibility of carrying out an archaeome analysis from FFPE tissues using a simple DNA extraction protocol. Our analysis revealed the enrichment of Halobacteria, especially Natrialba magadii, in tumor mucosa compared to the normal mucosa in CRC Tunisian patients. Other species were also associated with CRC, including Sulfolobus acidocaldarius and Methanococcus voltae, which is a methanogenic archaea; both species were found to be correlated with adjacent healthy tissues.

2.
Microorganisms ; 11(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004753

RESUMO

BACKGROUND AND AIMS: Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea's role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. METHODS: We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. RESULTS: Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p < 0.001). Functionally, we found a marked association between MvhB-type polyferredoxin and colorectal cancer. We also highlighted the association of archaeal proteins involved in the biosynthesis of leucine and the galactose metabolism process with the healthy phenotype. CONCLUSIONS: The archaeomes of CRC patients show identifiable alterations, including a decline in methanogens and an increase in Halobacteria species. MvhB-type polyferredoxin, linked with CRC and species like Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea's role in CRC dynamics.

3.
Microorganisms ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36557618

RESUMO

Colorectal cancer (CRC) is a growing public health challenge, featuring a multifactorial etiology and complex host-environment interactions. Recently, increasing evidence has pointed to the role of the gut microbiota in CRC development and progression. To explore the role of gut microbes in CRC, we retrieved metagenomic data from 156 stools from the European Nucleotide Archive database and mapped them against the VFDB database for virulence factors (VFs). GO annotations of VFs and KEGG pathways were then performed to predict the microbial functions and define functional pathways enriched in the tumor-associated microbiota. Interestingly, 306 VFs were detected in the metagenomic data. We revealed the enrichment of adenomas with VFs involved in cell adhesion, whereas in the early stages of CRC they were enriched in both adhesins and isochorismatase. Advanced stages of CRC were enriched with microbial siderophores, especially enterobactin, which was significantly associated with isochorismate synthase. We highlighted higher abundances of porins and transporters involved in antibiotic resistance and the development of biofilm in advanced stages of CRC. Most VFs detected in CRC, particularly in advanced stages, were shown to be included in siderophore biosynthesis pathways. This enrichment of predicted VFs supports the key role of the gut microbiota in the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA