Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(9): 1144-1161, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37017084

RESUMO

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS: We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS: We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS: Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.


Assuntos
Doença da Artéria Coronariana , Hipertensão , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla , Remodelação Vascular , Infarto do Miocárdio/metabolismo , Hipertensão/metabolismo , Miócitos de Músculo Liso/metabolismo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 42(5): 659-676, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35321563

RESUMO

BACKGROUND: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.


Assuntos
Aterosclerose , Placa Aterosclerótica , Proteínas Repressoras/metabolismo , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Aterosclerose/metabolismo , Transdiferenciação Celular , Humanos , Lipídeos , Camundongos , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/genética , Transcriptoma , Proteínas Supressoras de Tumor/genética , Ultrassonografia
3.
Eur J Vasc Endovasc Surg ; 65(6): 778-786, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871924

RESUMO

OBJECTIVE: Carotid endarterectomy (CEA) is an effective surgical method for stroke prevention in selected patients with carotid stenosis. Few contemporary studies report on the long term mortality rate in CEA treated patients, despite continuous changes in medication, diagnostics, and patient selection. Here, the long term mortality rate is described in a well characterised cohort of asymptomatic and symptomatic CEA patients, sex differences evaluated, and mortality ratio compared with the general population. METHODS: This was a two centre, non-randomised, observational study evaluating all cause, long term mortality in CEA patients from Stockholm, Sweden between 1998 and 2017. Death and comorbidities were extracted from national registries and medical records. Cox regression was adapted to analyse associations between clinical characteristics and outcome. Sex differences and standardised mortality ratio (SMR, age and sex matched) were studied. RESULTS: A total of 1 033 patients were followed for 6.6 ± 4.8 years. Of those, 349 patients died during follow up where the overall mortality rate was similar in asymptomatic and symptomatic patients (34.2% vs. 33.7%, p = .89). Symptomatic disease did not influence the mortality risk (adjusted HR 1.14, 95% CI 0.81 - 1.62). Women had lower crude mortality rate than men in the first 10 years (20.8% vs. 27.6%, p = .019). In women, cardiac disease was associated with increased mortality (adjusted HR 3.55, 95% CI 2.18 - 5.79), while in men, lipid lowering medication was protective (adjusted HR 0.61, 95% CI 0.39 - 0.96). Within the first five years after surgery, SMR was increased for all patients (men 1.50, 95% CI 1.21 - 1.86; women 2.41, 95% CI 1.74 - 3.35), as well as in patients < 80 years (SMR 1.46, 95% CI 1.23 - 1.73). CONCLUSION: Symptomatic and asymptomatic carotid patients have similar long term mortality rates after CEA, but men had worse outcome than women. Sex, age, and time after surgery were shown to influence SMR. These results highlight the need for targeted secondary prevention, to alter the long term adverse effects in CEA patients.


Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Endarterectomia das Carótidas/efeitos adversos , Fatores de Risco , Resultado do Tratamento , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/cirurgia , Artérias Carótidas , Acidente Vascular Cerebral/epidemiologia , Estudos Retrospectivos , Medição de Risco , Stents
4.
Circulation ; 144(19): 1567-1583, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34647815

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are important regulators of biological processes involved in vascular tissue homeostasis and disease development. The present study assessed the functional contribution of the lncRNA myocardial infarction-associated transcript (MIAT) to atherosclerosis and carotid artery disease. METHODS: We profiled differences in RNA transcript expression in patients with advanced carotid artery atherosclerotic lesions from the Biobank of Karolinska Endarterectomies. The lncRNA MIAT was identified as the most upregulated noncoding RNA transcript in carotid plaques compared with nonatherosclerotic control arteries, which was confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. RESULTS: Experimental knockdown of MIAT, using site-specific antisense oligonucleotides (LNA-GapmeRs) not only markedly decreased proliferation and migration rates of cultured human carotid artery smooth muscle cells (SMCs) but also increased their apoptosis. MIAT mechanistically regulated SMC proliferation through the EGR1 (Early Growth Response 1)-ELK1 (ETS Transcription Factor ELK1)-ERK (Extracellular Signal-Regulated Kinase) pathway. MIAT is further involved in SMC phenotypic transition to proinflammatory macrophage-like cells through binding to the promoter region of KLF4 and enhancing its transcription. Studies using Miat-/- and Miat-/-ApoE-/- mice, and Yucatan LDLR-/- mini-pigs, as well, confirmed the regulatory role of this lncRNA in SMC de- and transdifferentiation and advanced atherosclerotic lesion formation. CONCLUSIONS: The lncRNA MIAT is a novel regulator of cellular processes in advanced atherosclerosis that controls proliferation, apoptosis, and phenotypic transition of SMCs, and the proinflammatory properties of macrophages, as well.


Assuntos
Aterosclerose/genética , Placa Aterosclerótica/genética , RNA Longo não Codificante/metabolismo , Animais , Humanos , Camundongos
5.
Circulation ; 143(2): 163-177, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33222501

RESUMO

BACKGROUND: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS: We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS: We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


Assuntos
Aterosclerose/metabolismo , Inativação Gênica/fisiologia , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Colesterol na Dieta/administração & dosagem , Colesterol na Dieta/efeitos adversos , Feminino , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
6.
Stroke ; 53(3): e79-e84, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35135320

RESUMO

BACKGROUND: Stable atherosclerotic plaques are characterized by thick fibrous caps of smooth muscle cells, collagen, and macrocalcifications. Identifying factors of plaque stability is necessary to design drugs to prevent plaque rupture and symptoms. Osteomodulin, originally identified in bones, is expressed by bone synthesizing osteoblasts and involved in mineralization. In the present study, we analyzed osteomodulin expression in human carotid plaques, its link with plaque phenotype, calcification, and future cardiovascular events. METHODS: Osteomodulin gene expression (OMD; n=82) was determined by RNA sequencing and osteomodulin protein levels by immunohistochemistry (n=45) in carotid plaques obtained by endarterectomy from patients with or without cerebrovascular symptoms from the CPIP (Carotid Plaque Imaging Project) cohort, Skåne University Hospital, Sweden. Plaque components were assessed by immunohistochemistry, RNA sequencing, and multiplex analysis. Patients were followed for cardiovascular events or cardiovascular death during a median of 57 or 70 months, respectively, using national registers. RESULTS: OMD levels were increased in plaques from asymptomatic patients compared to symptomatics. High OMD levels were associated with fewer cardiovascular events during follow-up. OMD correlated positively with smooth muscle α-actin (ACTA2; r=0.73, P=10-13) and collagen (COL1A2; r=0.4, P=0.0002), but inversely with CD68 gene expression (r=-0.67, P=10-11), lipids (r=-0.37, P=0.001), intraplaque hemorrhage (r=-0.32, P=0.010), inflammatory cytokine, and matrix metalloproteinase plaque contents. OMD was positively associated with MSX2 (Msh Homeobox 2) (r=0.32, P=0.003), a marker of preosteoblast differentiation, BMP4 (bone morphogenetic protein) (r=0.50, P=0.000002) and BMP6 (r=0.47, P=0.000007), plaque calcification (r=0.35, P=0.016), and was strongly upregulated in osteogenically stimulated smooth muscle cells, which was further increased upon BMP stimulation. Osteomodulin protein was present in calcified regions. Osteomodulin protein levels were associated with plaque calcification (r=0.41, P=0.006) and increased in macrocalcified plaques. CONCLUSIONS: These data show that osteomodulin mRNA and protein levels are associated with plaque calcification in human atherosclerosis. Furthermore, osteomodulin mRNA, but not protein levels, is associated with plaque stability.


Assuntos
Doenças Cardiovasculares/epidemiologia , Proteínas da Matriz Extracelular/genética , Placa Aterosclerótica/genética , Proteoglicanas/genética , Calcificação Vascular/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Placa Aterosclerótica/metabolismo , Proteoglicanas/metabolismo , Suécia/epidemiologia , Calcificação Vascular/metabolismo
7.
Circ Res ; 126(5): 571-585, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893970

RESUMO

RATIONALE: PCSKs (Proprotein convertase subtilisins/kexins) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix remodeling, and mitogens. OBJECTIVE: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. METHODS AND RESULTS: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions versus healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localized to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB (platelet-derived growth factor subunit B) and MMP (matrix metalloprotease) 2/MMP14. Here, PCSK6 was shown to colocalize and cointeract with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6-/- versus control mice revealed suppression of contractile SMC markers, extracellular matrix remodeling enzymes, and cytokines/receptors. Pcsk6-/- mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro leads to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB (platelet-derived growth factor BB)-induced cell proliferation and particularly migration. CONCLUSIONS: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling. Visual Overview: An online visual overview is available for this article.


Assuntos
Miócitos de Músculo Liso/metabolismo , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Remodelação Vascular , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/fisiologia , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertases/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/metabolismo , Transcriptoma
9.
Nature ; 536(7614): 86-90, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27437576

RESUMO

Atherosclerosis is the disease process that underlies heart attack and stroke. Advanced lesions at risk of rupture are characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Why these cells are not cleared remains unknown. Here we show that atherogenesis is associated with upregulation of CD47, a key anti-phagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or 'efferocytosis'. We find that administration of CD47-blocking antibodies reverses this defect in efferocytosis, normalizes the clearance of diseased vascular tissue, and ameliorates atherosclerosis in multiple mouse models. Mechanistic studies implicate the pro-atherosclerotic factor TNF-α as a fundamental driver of impaired programmed cell removal, explaining why this process is compromised in vascular disease. Similar to recent observations in cancer, impaired efferocytosis appears to play a pathogenic role in cardiovascular disease, but is not a fixed defect and may represent a novel therapeutic target.


Assuntos
Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Aterosclerose/prevenção & controle , Antígeno CD47/imunologia , Fagocitose/efeitos dos fármacos , Animais , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/terapia , Antígeno CD47/biossíntese , Antígeno CD47/metabolismo , Artérias Carótidas/patologia , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , NF-kappa B/metabolismo , Biossíntese de Proteínas , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
10.
Proc Natl Acad Sci U S A ; 116(33): 16410-16419, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31350345

RESUMO

Atherosclerosis is a chronic inflammatory disease that is driven, in part, by activation of vascular endothelial cells (ECs). In response to inflammatory stimuli, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway orchestrates the expression of a network of EC genes that contribute to monocyte recruitment and diapedesis across the endothelium. Although many long noncoding RNAs (lncRNAs) are dysregulated in atherosclerosis, they remain poorly characterized, especially in the context of human vascular inflammation. Prior studies have illustrated that lncRNAs can regulate their neighboring protein-coding genes via interaction with protein complexes. We therefore identified and characterized neighboring interleukin-1ß (IL-1ß)-regulated messenger RNA (mRNA)-lncRNA pairs in ECs. We found these pairs to be highly correlated in expression, especially when located within the same chromatin territory. Additionally, these pairs were predominantly divergently transcribed and shared common gene regulatory elements, characterized by active histone marks and NF-κB binding. Further analysis was performed on lncRNA-CCL2, which is transcribed divergently to the gene, CCL2, encoding a proatherosclerotic chemokine. LncRNA-CCL2 and CCL2 showed coordinate up-regulation in response to inflammatory stimuli, and their expression was correlated in unstable symptomatic human atherosclerotic plaques. Knock-down experiments revealed that lncRNA-CCL2 positively regulated CCL2 mRNA levels in multiple primary ECs and EC cell lines. This regulation appeared to involve the interaction of lncRNA-CCL2 with RNA binding proteins, including HNRNPU and IGF2BP2. Hence, our approach has uncovered a network of neighboring mRNA-lncRNA pairs in the setting of inflammation and identified the function of an lncRNA, lncRNA-CCL2, which may contribute to atherogenesis in humans.


Assuntos
Aterosclerose/genética , Quimiocina CCL2/genética , Inflamação/genética , RNA Longo não Codificante/genética , Aterosclerose/patologia , Linhagem Celular , Cromatina/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Código das Histonas/genética , Humanos , Inflamação/patologia , Interleucina-1beta/genética , NF-kappa B/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Transdução de Sinais/genética
11.
Eur J Vasc Endovasc Surg ; 62(5): 716-726, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34511314

RESUMO

OBJECTIVE: Ischaemic strokes can be caused by unstable carotid atherosclerosis, but methods for identification of high risk lesions are lacking. Carotid plaque morphology imaging using software for visualisation of plaque components in computed tomography angiography (CTA) may improve assessment of plaque phenotype and stroke risk, but it is unknown if such analyses also reflect the biological processes related to lesion stability. Here, we investigated how carotid plaque morphology by image analysis of CTA is associated with biological processes assessed by transcriptomic analyses of corresponding carotid endarterectomies (CEAs). METHODS: Carotid plaque morphology was assessed in patients undergoing CEA for symptomatic or asymptomatic carotid stenosis consecutively enrolled between 2006 and 2015. Computer based analyses of pre-operative CTA was performed to define calcification, lipid rich necrotic core (LRNC), intraplaque haemorrhage (IPH), matrix (MATX), and plaque burden. Plaque morphology was correlated with molecular profiles obtained from microarrays of corresponding CEAs and models were built to assess the ability of plaque morphology to predict symptomatology. RESULTS: Carotid plaques (n = 93) from symptomatic patients (n = 61) had significantly higher plaque burden and LRNC compared with plaques from asymptomatic patients (n = 32). Lesions selected from the transcriptomic cohort (n = 40) with high LRNC, IPH, MATX, or plaque burden were characterised by molecular signatures coupled with inflammation and extracellular matrix degradation, typically linked with instability. In contrast, highly calcified plaques had a molecular signature signifying stability with enrichment of profibrotic pathways and repressed inflammation. In a cross validated prediction model for symptoms, plaque morphology by CTA alone was superior to the degree of stenosis. CONCLUSION: The study demonstrates that CTA image analysis for evaluation of carotid plaque morphology, also reflects prevalent biological processes relevant for assessment of plaque phenotype. The results support the use of CTA image analysis of plaque morphology for risk stratification and management of patients with carotid stenosis.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Idoso , Estenose das Carótidas/etiologia , Estudos de Coortes , Angiografia por Tomografia Computadorizada , Endarterectomia das Carótidas , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Placa Aterosclerótica/etiologia , Sensibilidade e Especificidade
12.
Vasc Med ; 26(1): 3-10, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350884

RESUMO

Interleukin (IL) 6 contributes to atherosclerotic plaque development through IL6 membrane-bound (IL6R and gp130) and soluble (sIL6R and sgp130) receptors. We investigated IL6 receptor expression in carotid plaques and its correlation with circulating IL6 and soluble receptor levels. Plasma samples and carotid plaques were obtained from 78 patients in the Biobank of Karolinska Endarterectomies study. IL6, sIL6R, and sgp130 were measured in plasma and IL6, IL6R, sIL6R, GP130, and sGP130-RAPS (sGP130) gene expression assessed in carotid plaques. Correlations between plaque IL6 signaling gene expression and plasma levels were determined by Spearman's correlation. Differences in plasma and gene expression levels between patients with (n = 53) and without (n = 25) a history of a cerebral event and statin-treated (n = 65) and non-treated (n = 11), were estimated by Kruskal-Wallis. IL6 and its receptors were all expressed in carotid plaques. There was a positive, borderline significant, moderate correlation between plasma IL6 and sIL6R and the respective gene expression levels (rho 0.23 and 0.22, both p = 0.05). IL6R expression was higher in patients with a history of a cerebrovascular event compared to those without (p = 0.007). Statin-treated had higher IL6R, sIL6R, and sGP130 expression levels and plasma sIL6R compared to non-treated patients (all p < 0.05). In conclusion, all components of the IL6 signaling pathways are expressed in carotid artery plaques and IL6 and sIL6R plasma levels correlate moderately with IL6 and sIL6R. Our data suggest that IL6 signaling in the circulation might mirror the system activity in the plaque, thus adding novel perspectives to the role of IL6 signaling in atherosclerosis.


Assuntos
Artérias Carótidas/metabolismo , Estenose das Carótidas/metabolismo , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Placa Aterosclerótica , Receptores de Interleucina-6/metabolismo , Idoso , Biomarcadores/metabolismo , Artérias Carótidas/cirurgia , Estenose das Carótidas/sangue , Estenose das Carótidas/genética , Estenose das Carótidas/terapia , Estudos Transversais , Receptor gp130 de Citocina/sangue , Receptor gp130 de Citocina/genética , Endarterectomia das Carótidas , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Interleucina-6/sangue , Interleucina-6/genética , Masculino , Receptores de Interleucina-6/sangue , Receptores de Interleucina-6/genética , Transdução de Sinais
13.
PLoS Genet ; 14(11): e1007755, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30444878

RESUMO

Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.


Assuntos
Autoantígenos/genética , Doença da Artéria Coronariana/genética , Proteínas do Citoesqueleto/genética , Miócitos de Músculo Liso/metabolismo , Alelos , Animais , Autoantígenos/metabolismo , Becaplermina/metabolismo , Sítios de Ligação/genética , Células Cultivadas , Mapeamento Cromossômico , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Camundongos , Camundongos Transgênicos , Modelos Cardiovasculares , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Ligação Proteica , Locos de Características Quantitativas , Fatores de Risco
14.
J Infect Dis ; 222(12): 2041-2051, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32852032

RESUMO

Multiple viruses are implicated in atherosclerosis, but the mechanisms by which they infect cells and contribute to plaque formation in arterial walls are not well understood. Based on reports showing the presence of enterovirus in atherosclerotic plaques we hypothesized that the coxsackievirus and adenovirus receptor (CXADR/CAR), although absent in normal arteries, could be induced during plaque formation. Large-scale microarray and mass spectrometric analyses revealed significant up-regulation of CXADR messenger RNA and protein levels in plaque-invested carotid arteries compared with control arteries. Macrophages were identified as a previously unknown cellular source of CXADR in human plaques and plaques from Ldr-/-Apob100/100 mice. CXADR was specifically associated with M1-polarized macrophages and foam cells and was experimentally induced during macrophage differentiation. Furthermore, it was significantly correlated with receptors for other viruses linked to atherosclerosis. The results show that CXADR is induced in macrophages during plaque formation, suggesting a mechanism by which enterovirus infect cells in atherosclerotic plaques.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Artérias Carótidas/virologia , Modelos Animais de Doenças , Enterovirus/patogenicidade , Humanos , Macrófagos/virologia , Camundongos , Camundongos Knockout , Placa Aterosclerótica/virologia , RNA Mensageiro/metabolismo
15.
J Cell Physiol ; 235(10): 7370-7382, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039481

RESUMO

Smooth muscle cells (SMCs) are characterized by a high degree of phenotypic plasticity. Contractile differentiation is governed by myocardin-related transcription factors (MRTFs), in particular myocardin (MYOCD), and when their drive is lost, the cells become proliferative and synthetic with an expanded endoplasmic reticulum (ER). ER is responsible for assembly and folding of secreted proteins. When the load on the ER surpasses its capacity, three stress sensors (activating transcription factor 6 [ATF6], inositol-requiring enzyme 1α [IRE1α]/X-box binding protein 1 [XBP1], and PERK/ATF4) are activated to expand the ER and increase its folding capacity. This is referred to as the unfolded protein response (UPR). Here, we hypothesized that there is a reciprocal relationship between SMC differentiation and the UPR. Tight negative correlations between SMC markers (MYH11, MYOCD, KCNMB1, SYNPO2) and UPR markers (SDF2L1, CALR, MANF, PDIA4) were seen in microarray data sets from carotid arterial injury, partial bladder outlet obstruction, and bladder denervation, respectively. The UPR activators dithiothreitol (DTT) and tunicamycin (TN) activated the UPR and reduced MYOCD along with SMC markers in vitro. The IRE1α inhibitor 4µ8C counteracted the effect of DTT and TN on SMC markers and MYOCD expression. Transfection of active XBP1s was sufficient to reduce both MYOCD and the SMC markers. MRTFs also antagonized the UPR as indicated by reduced TN and DTT-mediated induction of CRELD2, MANF, PDIA4, and SDF2L1 following overexpression of MRTFs. The latter effect did not involve the newly identified MYOCD/SRF target MSRB3, or reduced production of either XBP1s or cleaved ATF6. The UPR thus counteracts SMC differentiation via the IRE1α/XBP1 arm of the UPR and MYOCD repression.


Assuntos
Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Transcrição Gênica/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Bexiga Urinária/metabolismo
16.
Circulation ; 139(10): 1320-1334, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586743

RESUMO

BACKGROUND: The majority of the human genome comprises noncoding sequences, which are in part transcribed as long noncoding RNAs (lncRNAs). lncRNAs exhibit multiple functions, including the epigenetic control of gene expression. In this study, the effect of the lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) on atherosclerosis was examined. METHODS: The effect of MALAT1 on atherosclerosis was determined in apolipoprotein E-deficient (Apoe-/-) MALAT1-deficient (Malat1-/-) mice that were fed with a high-fat diet and by studying the regulation of MALAT1 in human plaques. RESULTS: Apoe-/- Malat1-/- mice that were fed a high-fat diet showed increased plaque size and infiltration of inflammatory CD45+ cells compared with Apoe-/- Malat1+/+ control mice. Bone marrow transplantation of Apoe-/- Malat1-/- bone marrow cells in Apoe-/- Malat1+/+ mice enhanced atherosclerotic lesion formation, which suggests that hematopoietic cells mediate the proatherosclerotic phenotype. Indeed, bone marrow cells isolated from Malat1-/- mice showed increased adhesion to endothelial cells and elevated levels of proinflammatory mediators. Moreover, myeloid cells of Malat1-/- mice displayed enhanced adhesion to atherosclerotic arteries in vivo. The anti-inflammatory effects of MALAT1 were attributed in part to reduction of the microRNA miR-503. MALAT1 expression was further significantly decreased in human plaques compared with normal arteries and was lower in symptomatic versus asymptomatic patients. Lower levels of MALAT1 in human plaques were associated with a worse prognosis. CONCLUSIONS: Reduced levels of MALAT1 augment atherosclerotic lesion formation in mice and are associated with human atherosclerotic disease. The proatherosclerotic effects observed in Malat1-/- mice were mainly caused by enhanced accumulation of hematopoietic cells.


Assuntos
Aorta/metabolismo , Aortite/metabolismo , Aterosclerose/metabolismo , Células da Medula Óssea/metabolismo , Hematopoese , Placa Aterosclerótica , RNA Longo não Codificante/metabolismo , Animais , Aorta/patologia , Aortite/genética , Aortite/patologia , Aterosclerose/genética , Aterosclerose/patologia , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Estudos de Casos e Controles , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais
17.
Circulation ; 139(21): 2466-2482, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30894016

RESUMO

BACKGROUND: Atherosclerosis progression is modulated by interactions with the adaptive immune system. Humoral immunity can help protect against atherosclerosis formation; however, the existence, origin, and function of putative atherogenic antibodies are controversial. How such atherosclerosis-promoting antibodies could affect the specific composition and stability of plaques, as well as the vasculature generally, remains unknown. METHODS: We addressed the overall contribution of antibodies to atherosclerosis plaque formation, composition, and stability in vivo (1) with mice that displayed a general loss of antibodies, (2) with mice that had selectively ablated germinal center-derived IgG production, or (3) through interruption of T-B-cell interactions and further studied the effects of antibody deficiency on the aorta by transcriptomics. RESULTS: Here, we demonstrate that atherosclerosis-prone mice with attenuated plasma cell function manifest reduced plaque burden, indicating that antibodies promote atherosclerotic lesion size. However, the composition of the plaque was altered in antibody-deficient mice, with an increase in lipid content and decreases in smooth muscle cells and macrophages, resulting in an experimentally validated vulnerable plaque phenotype. Furthermore, IgG antibodies enhanced smooth muscle cell proliferation in vitro in an Fc receptor-dependent manner, and antibody-deficient mice had decreased neointimal hyperplasia formation in vivo. These IgG antibodies were shown to be derived from germinal centers, and mice genetically deficient for germinal center formation had strongly reduced atherosclerosis plaque formation. mRNA sequencing of aortas revealed that antibodies are required for the sufficient expression of multiple signal-induced and growth-promoting transcription factors and that aortas undergo large-scale metabolic reprograming in their absence. Using an elastase model, we demonstrated that absence of IgG results in an increased severity of aneurysm formation. CONCLUSIONS: We propose that germinal center-derived IgG antibodies promote the size and stability of atherosclerosis plaques, through promoting arterial smooth muscle cell proliferation and maintaining the molecular identity of the aorta. These results could have implications for therapies that target B cells or B-T-cell interactions because the loss of humoral immunity leads to a smaller but less stable plaque phenotype.


Assuntos
Aorta/imunologia , Doenças da Aorta/imunologia , Aterosclerose/imunologia , Centro Germinativo/imunologia , Imunoglobulina G/imunologia , Placa Aterosclerótica , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Centro Germinativo/metabolismo , Imunoglobulina G/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fator 1 de Ligação ao Domínio I Regulador Positivo/deficiência , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Ruptura Espontânea , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
PLoS Genet ; 13(5): e1006750, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28481916

RESUMO

Both environmental factors and genetic loci have been associated with coronary artery disease (CAD), however gene-gene and gene-environment interactions that might identify molecular mechanisms of risk are not easily studied by human genetic approaches. We have previously identified the transcription factor TCF21 as the causal CAD gene at 6q23.2 and characterized its downstream transcriptional network that is enriched for CAD GWAS genes. Here we investigate the hypothesis that TCF21 interacts with a downstream target gene, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates the cellular response to environmental contaminants, including dioxin and polycyclic aromatic hydrocarbons (e.g., tobacco smoke). Perturbation of TCF21 expression in human coronary artery smooth muscle cells (HCASMC) revealed that TCF21 promotes expression of AHR, its heterodimerization partner ARNT, and cooperates with these factors to upregulate a number of inflammatory downstream disease related genes including IL1A, MMP1, and CYP1A1. TCF21 was shown to bind in AHR, ARNT and downstream target gene loci, and co-localization was noted for AHR-ARNT and TCF21 binding sites genome-wide in regions of HCASMC open chromatin. These regions of co-localization were found to be enriched for GWAS signals associated with cardio-metabolic as well as chronic inflammatory disease phenotypes. Finally, we show that similar to TCF21, AHR gene expression is increased in atherosclerotic lesions in mice in vivo using laser capture microdissection, and AHR protein is localized in human carotid atherosclerotic lesions where it is associated with protein kinases with a critical role in innate immune response. These data suggest that TCF21 can cooperate with AHR to activate an inflammatory gene expression program that is exacerbated by environmental stimuli, and may contribute to the overall risk for CAD.


Assuntos
Aterosclerose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Aterosclerose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Células HEK293 , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores de Hidrocarboneto Arílico/genética
19.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30452556

RESUMO

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Assuntos
Aterosclerose/etiologia , Linfócitos T CD8-Positivos/imunologia , Linfoma de Células B/complicações , Macrófagos/patologia , Proteína Oncogênica v-cbl/metabolismo , Placa Aterosclerótica/etiologia , Animais , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
20.
Am J Physiol Cell Physiol ; 317(6): C1128-C1142, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461342

RESUMO

Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin (MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.


Assuntos
Cofilina 2/genética , Proteínas de Filamentos Intermediários/genética , Miócitos de Músculo Liso/metabolismo , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genética , Actinas/genética , Actinas/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Antígeno CD146/genética , Antígeno CD146/metabolismo , Linhagem Celular , Cofilina 2/metabolismo , Vasos Coronários/citologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Desmina/genética , Desmina/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Tiazolidinas/farmacologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA