Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Immunol ; 208(7): 1566-1584, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321883

RESUMO

The BCR comprises a membrane-bound Ig that is noncovalently associated with a heterodimer of CD79A and CD79B. While the BCR Ig component functions to sense extracellular Ag, CD79 subunits contain cytoplasmic ITAMs that mediate intracellular propagation of BCR signals critical for B cell development, survival, and Ag-induced activation. CD79 is therefore an attractive target for Ab and chimeric Ag receptor T cell therapies for autoimmunity and B cell neoplasia. Although the mouse is an attractive model for preclinical testing, due to its well-defined immune system, an obstacle is the lack of cross-reactivity of candidate therapeutic anti-human mAbs with mouse CD79. To overcome this problem, we generated knockin mice in which the extracellular Ig-like domains of CD79A and CD79B were replaced with human equivalents. In this study, we describe the generation and characterization of mice expressing chimeric CD79 and report studies that demonstrate their utility in preclinical analysis of anti-human CD79 therapy. We demonstrate that human and mouse CD79 extracellular domains are functionally interchangeable, and that anti-human CD79 lacking Fc region effector function does not cause significant B cell depletion, but induces 1) decreased expression of plasma membrane-associated IgM and IgD, 2) uncoupling of BCR-induced tyrosine phosphorylation and calcium mobilization, and 3) increased expression of PTEN, consistent with the levels observed in anergic B cells. Finally, anti-human CD79 treatment prevents disease development in two mouse models of autoimmunity. We also present evidence that anti-human CD79 treatment may inhibit Ab secretion by terminally differentiated plasmablasts and plasma cells in vitro.


Assuntos
Linfócitos B , Ativação Linfocitária , Animais , Anticorpos Monoclonais/uso terapêutico , Anergia Clonal , Modelos Animais de Doenças , Camundongos
2.
Immunology ; 162(1): 68-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931017

RESUMO

Memory T cells respond rapidly in part because they are less reliant on a heightened levels of costimulatory molecules. This enables rapid control of secondary infecting pathogens but presents challenges to efforts to control or silence memory CD4 T cells, for example in antigen-specific tolerance strategies for autoimmunity. We have examined the transcriptional and functional consequences of reactivating memory CD4 T cells in the absence of an adjuvant. We find that memory CD4 T cells generated by infection or immunisation survive secondary activation with antigen delivered without adjuvant, regardless of their location in secondary lymphoid organs or peripheral tissues. These cells were, however, functionally altered following a tertiary immunisation with antigen and adjuvant, proliferating poorly but maintaining their ability to produce inflammatory cytokines. Transcriptional and cell cycle analysis of these memory CD4 T cells suggests they are unable to commit fully to cell division potentially because of low expression of DNA repair enzymes. In contrast, these memory CD4 T cells could proliferate following tertiary reactivation by viral re-infection. These data indicate that antigen-specific tolerogenic strategies must examine multiple parameters of Tcell function, and provide insight into the molecular mechanisms that may lead to deletional tolerance of memory CD4 T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Tolerância Imunológica/imunologia , Memória Imunológica/imunologia , Animais , Antígenos/imunologia , Autoimunidade/imunologia , Ciclo Celular/imunologia , Proliferação de Células/fisiologia , Citocinas/imunologia , Reparo do DNA/imunologia , Feminino , Inflamação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/imunologia
3.
Proc Natl Acad Sci U S A ; 115(6): E1204-E1213, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29351991

RESUMO

MHC class I-like CD1 molecules have evolved to present lipid-based antigens to T cells. Differences in the antigen-binding clefts of the CD1 family members determine the conformation and size of the lipids that are presented, although the factors that shape CD1 diversity remain unclear. In mice, two homologous genes, CD1D1 and CD1D2, encode the CD1d protein, which is essential to the development and function of natural killer T (NKT) cells. However, it remains unclear whether both CD1d isoforms are equivalent in their antigen presentation capacity and functions. Here, we report that CD1d2 molecules are expressed in the thymus of some mouse strains, where they select functional type I NKT cells. Intriguingly, the T cell antigen receptor repertoire and phenotype of CD1d2-selected type I NKT cells in CD1D1-/- mice differed from CD1d1-selected type I NKT cells. The structures of CD1d2 in complex with endogenous lipids and a truncated acyl-chain analog of α-galactosylceramide revealed that its A'-pocket was restricted in size compared with CD1d1. Accordingly, CD1d2 molecules could not present glycolipid antigens with long acyl chains efficiently, favoring the presentation of short acyl chain antigens. These results indicate that the two CD1d molecules present different sets of self-antigen(s) in the mouse thymus, thereby impacting the development of invariant NKT cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD1d/fisiologia , Diferenciação Celular , Glicolipídeos/imunologia , Células Matadoras Naturais/imunologia , Timo/imunologia , Animais , Células Cultivadas , Cristalografia por Raios X , Células Matadoras Naturais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação Proteica , Isoformas de Proteínas , Timo/citologia
4.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L294-L311, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491951

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-ß (TGF-ß), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-ß signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-ß signaling and downstream TGF-ß-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-ß-induced tyrosine phosphorylation of TGF-ß type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-ß-dependent pathway signaling in lung fibroblasts.


Assuntos
Fibroblastos/metabolismo , Pulmão/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Bleomicina/farmacologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/efeitos dos fármacos
5.
Immunity ; 34(3): 315-26, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21376640

RESUMO

The antigen receptor for natural killer T cells (NKT TCR) binds CD1d-restricted microbial and self-lipid antigens, although the molecular basis of self-CD1d recognition is unclear. Here, we have characterized NKT TCR recognition of CD1d molecules loaded with natural self-antigens (Ags) and report the 2.3 Å resolution structure of an autoreactive NKT TCR-phosphatidylinositol-CD1d complex. NKT TCR recognition of self- and foreign antigens was underpinned by a similar mode of germline-encoded recognition of CD1d. However, NKT TCR autoreactivity is mediated by unique sequences within the non-germline-encoded CDR3ß loop encoding for a hydrophobic motif that promotes self-association with CD1d. Accordingly, NKT cell autoreactivity may arise from the inherent affinity of the interaction between CD1d and the NKT TCR, resulting in the recognition of a broad range of CD1d-restricted self-antigens. This demonstrates that multiple self-antigens can be recognized in a similar manner by autoreactive NKT TCRs.


Assuntos
Antígenos CD1d/imunologia , Autoantígenos , Células T Matadoras Naturais/imunologia , Animais , Cristalografia por Raios X , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Complexos Multiproteicos , Receptores de Células Matadoras Naturais/imunologia
7.
Proc Natl Acad Sci U S A ; 113(38): E5608-17, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27588903

RESUMO

The interaction of αß T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line-encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Sequência de Aminoácidos/genética , Animais , Células Germinativas/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Peptídeos/genética , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Timo/imunologia , Timo/metabolismo
8.
Immunity ; 31(1): 60-71, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19592274

RESUMO

Mouse type I natural killer T cell receptors (iNKT TCRs) use a single V alpha 14-J alpha 18 sequence and V beta s that are almost always V beta 8.2, V beta 7, or V beta 2, although the basis of this differential usage is unclear. We showed that the V beta bias occurred as a consequence of the CDR2 beta loops determining the affinity of the iNKT TCR for CD1d-glycolipids, thus controlling positive selection. Within a conserved iNKT-TCR-CD1d docking framework, these inherent V beta-CD1d affinities are further modulated by the hypervariable CDR3 beta loop, thereby defining a functional interplay between the two iNKT TCR CDR beta loops. These V beta biases revealed a broadly hierarchical response in which V beta 8.2 > V beta 7 > V beta 2 in the recognition of diverse CD1d ligands. This restriction of the iNKT TCR repertoire during thymic selection paradoxically ensures that each peripheral iNKT cell recognizes a similar spectrum of antigens.


Assuntos
Antígenos CD1d/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Antígenos CD1d/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timo/imunologia
9.
Immunity ; 31(1): 47-59, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19592275

RESUMO

The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR alpha chain is typically invariant, the beta chain expression is more diverse, where three V beta chains are commonly expressed in mice. We report the structures of V alpha 14-V beta 8.2 and V alpha 14-V beta 7 NKT TCRs in complex with CD1d-alpha-galactosylceramide (alpha-GalCer) and the 2.5 A structure of the human NKT TCR-CD1d-alpha-GalCer complex. Both V beta 8.2 and V beta 7 NKT TCRs and the human NKT TCR ligated CD1d-alpha-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V beta domains of the V beta 8.2 and V beta 7 NKT TCR-CD1d complexes resulted in altered TCR beta-CD1d-mediated contacts and modulated recognition mediated by the invariant alpha chain. Mutagenesis studies revealed the differing contributions of V beta 8.2 and V beta 7 residues within the CDR2 beta loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V beta usage in NKT cells.


Assuntos
Antígenos CD1d/imunologia , Galactosilceramidas/imunologia , Células T Matadoras Naturais/imunologia , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Antígenos CD1d/química , Clonagem Molecular , Cristalização , Galactosilceramidas/química , Humanos , Camundongos , Mutagênese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética
10.
Proc Natl Acad Sci U S A ; 112(16): 5111-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25820174

RESUMO

Silencing of interleukin-32 (IL-32) in a differentiated human promonocytic cell line impairs killing of Mycobacterium tuberculosis (MTB) but the role of IL-32 in vivo against MTB remains unknown. To study the effects of IL-32 in vivo, a transgenic mouse was generated in which the human IL-32γ gene is expressed using the surfactant protein C promoter (SPC-IL-32γTg). Wild-type and SPC-IL-32γTg mice were infected with a low-dose aerosol of a hypervirulent strain of MTB (W-Beijing HN878). At 30 and 60 d after infection, the transgenic mice had 66% and 85% fewer MTB in the lungs and 49% and 68% fewer MTB in the spleens, respectively; the transgenic mice also exhibited greater survival. Increased numbers of host-protective innate and adaptive immune cells were present in SPC-IL-32γTg mice, including tumor necrosis factor-alpha (TNFα) positive lung macrophages and dendritic cells, and IFN-gamma (IFNγ) and TNFα positive CD4(+) and CD8(+) T cells in the lungs and mediastinal lymph nodes. Alveolar macrophages from transgenic mice infected with MTB ex vivo had reduced bacterial burden and increased colocalization of green fluorescent protein-labeled MTB with lysosomes. Furthermore, mouse macrophages made to express IL-32γ but not the splice variant IL-32ß were better able to limit MTB growth than macrophages capable of producing both. The lungs of patients with tuberculosis showed increased IL-32 expression, particularly in macrophages of granulomas and airway epithelial cells but also B cells and T cells. We conclude that IL-32γ enhances host immunity to MTB.


Assuntos
Interleucinas/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/prevenção & controle , Imunidade Adaptativa/imunologia , Animais , Antígenos Ly/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Humanos , Imunidade Inata/imunologia , Interferon gama , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/patologia , Macrófagos Alveolares/imunologia , Camundongos Transgênicos , Mutação/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Sítios de Splice de RNA/genética , Linfócitos T Reguladores/imunologia , Transfecção , Transgenes , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência/imunologia
11.
Proc Natl Acad Sci U S A ; 111(1): E119-28, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344267

RESUMO

The self-reactivity of their T-cell antigen receptor (TCR) is thought to contribute to the development of immune regulatory cells, such as invariant NK T cells (iNKT). In the mouse, iNKT cells express TCRs composed of a unique Vα14-Jα18 rearrangement and recognize lipid antigens presented by CD1d molecules. We created mice expressing a transgenic TCR-ß chain that confers high affinity for self-lipid/CD1d complexes when randomly paired with the mouse iNKT Vα14-Jα18 rearrangement to study their development. We show that although iNKT cells undergo agonist selection, their development is also shaped by negative selection in vivo. In addition, iNKT cells that avoid negative selection in these mice express natural sequence variants of the canonical TCR-α and decreased affinity for self/CD1d. However, limiting the affinity of the iNKT TCRs for "self" leads to inefficient Egr2 induction, poor expression of the iNKT lineage-specific zinc-finger transcription factor PLZF, inadequate proliferation of iNKT cell precursors, defects in trafficking, and impaired effector functions. Thus, proper development of fully functional iNKT cells is constrained by a limited range of TCR affinity that plays a key role in triggering the iNKT cell-differentiation pathway. These results provide a direct link between the affinity of the TCR expressed by T-cell precursors for self-antigens and the proper development of a unique population of lymphocytes essential to immune responses.


Assuntos
Células T Matadoras Naturais/citologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Antígenos CD1d/química , Diferenciação Celular , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Sistema Imunitário , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Células T Matadoras Naturais/imunologia , Regiões Promotoras Genéticas , Retroviridae/genética , Ressonância de Plasmônio de Superfície , Timócitos/citologia , Fatores de Tempo
12.
Am J Respir Cell Mol Biol ; 55(3): 429-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27093475

RESUMO

Cigarette smoke (CS)-induced airway epithelial senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), although the underlying mechanisms remain largely unknown. Growth differentiation factor (GDF) 15 is increased in airway epithelium of smokers with COPD and CS-exposed human airway epithelial cells, but its role in CS-induced airway epithelial senescence is unclear. In this study, we first analyzed expression of GDF15 and cellular senescence markers in airway epithelial cells of current smokers and nonsmokers. Second, we determined the role of GDF15 in CS-induced airway epithelial senescence by using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 genome editing approach. Finally, we examined whether exogenous GDF15 protein promoted airway epithelial senescence through the activin receptor-like kinase 1/Smad1 pathway. GDF15 up-regulation was found in parallel with increased cellular senescence markers, p21, p16, and high-mobility group box 1 in airway epithelial cells of current smokers compared with nonsmokers. Moreover, CS extract induced cellular senescence in cultured human airway epithelial cells, represented by induced senescence-associated ß-galactosidase activity, inhibited cell proliferation, increased p21 expression, and increased release of high-mobility group box 1 and IL-6. Disruption of GDF15 significantly inhibited CS extract-induced airway epithelial senescence. Lastly, GDF15 protein bound to the activin receptor-like kinase 1 receptor and promoted airway epithelial senescence via activation of the Smad1 pathway. Our findings highlight an important contribution of GDF15 in promoting airway epithelial senescence upon CS exposure. Senescent airway epithelial cells that chronically accumulate in CS-exposed lungs could contribute substantially to chronic airway inflammation in COPD development and progression.


Assuntos
Senescência Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator 15 de Diferenciação de Crescimento/biossíntese , Fumar/efeitos adversos , Receptores de Activinas Tipo II/metabolismo , Idoso , Sistemas CRISPR-Cas/genética , Técnicas de Silenciamento de Genes , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pessoa de Meia-Idade , Fosforilação , Ligação Proteica , Transdução de Sinais , Proteína Smad1/metabolismo
13.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307020

RESUMO

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Assuntos
Metionina/análogos & derivados , NADPH Oxidases , Fagócitos , Animais , Camundongos , Humanos , Anaerobiose , Fagócitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiração
14.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37607030

RESUMO

Stimulation of adipocyte ß-adrenergic receptors (ß-ARs) induces expression of uncoupling protein 1 (UCP1), promoting nonshivering thermogenesis. Association of ß-ARs with a lysine-myristoylated form of A kinase-anchoring protein 12 (AKAP12, also known as gravin-α) is required for downstream signaling that culminates in UCP1 induction. Conversely, demyristoylation of gravin-α by histone deacetylase 11 (HDAC11) suppresses this pathway. Whether inhibition of HDAC11 in adipocytes is sufficient to drive UCP1 expression independently of ß-ARs is not known. Here, we demonstrate that adipocyte-specific deletion of HDAC11 in mice leads to robust induction of UCP1 in adipose tissue (AT), resulting in increased body temperature. These effects are mimicked by treating mice in vivo or human AT ex vivo with an HDAC11-selective inhibitor, FT895. FT895 triggers biphasic, gravin-α myristoylation-dependent induction of UCP1 protein expression, with a noncanonical acute response that is posttranscriptional and independent of protein kinase A (PKA), and a delayed response requiring PKA activity and new Ucp1 mRNA synthesis. Remarkably, HDAC11 inhibition promotes UCP1 expression even in models of adipocyte catecholamine resistance where ß-AR signaling is blocked. These findings define cell-autonomous, multimodal roles for HDAC11 as a suppressor of thermogenesis, and highlight the potential of inhibiting HDAC11 to therapeutically alter AT phenotype independently of ß-AR stimulation.


Assuntos
Adipócitos , Catecolaminas , Inibidores de Histona Desacetilases , Histona Desacetilases , Animais , Humanos , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Catecolaminas/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia
15.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076996

RESUMO

Background & aims: Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods: Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results: In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions: Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.

16.
Nat Genet ; 55(6): 1034-1047, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277650

RESUMO

Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (IFNR) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS. Whole-blood transcriptome analysis demonstrated that IFNR overexpression associates with chronic interferon hyperactivity and inflammation in people with DS. To define the contribution of this locus to DS phenotypes, we used genome editing to correct its copy number in a mouse model of DS, which normalized antiviral responses, prevented heart malformations, ameliorated developmental delays, improved cognition and attenuated craniofacial anomalies. Triplication of the Ifnr locus modulates hallmarks of DS in mice, suggesting that trisomy 21 elicits an interferonopathy potentially amenable to therapeutic intervention.


Assuntos
Síndrome de Down , Cardiopatias Congênitas , Animais , Camundongos , Síndrome de Down/genética , Receptores de Interferon/genética , Interferons , Fenótipo , Modelos Animais de Doenças
17.
J Immunol ; 185(1): 253-62, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20525882

RESUMO

Invariant NKT cells (iNKT cells) play a pivotal role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation. However, it is unclear what role they play in the initiation (sensitization) phase as opposed to the effector (challenge) phase. The role of iNKT cells during sensitization was examined by determining the response of mice to intratracheal transfer of OVA-pulsed or OVA-alpha-galactosylceramide (OVA/alphaGalCer)-pulsed bone marrow-derived dendritic cells (BMDCs) prior to allergen challenge. Wild-type (WT) recipients of OVA-BMDCs developed AHR, increased airway eosinophilia, and increased levels of Th2 cytokines in bronchoalveolar lavage fluid, whereas recipients of OVA/alphaGalCer BMDCs failed to do so. In contrast, transfer of these same OVA/alphaGalCer BMDCs into IFN-gamma-deficient (IFN-gamma(-/-)) mice enhanced the development of these lung allergic responses, which was reversed by exogenous IFN-gamma treatment following OVA-BMDC transfer. Further, Jalpha18-deficient recipients, which lack iNKT cells, developed the full spectrum of lung allergic responses following reconstitution with highly purified WT liver or spleen iNKT cells and transfer of OVA-BMDCs, whereas reconstituted recipients of OVA/alphaGalCer BMDCs failed to do so. Transfer of iNKT cells from IFN-gamma(-/-) mice restored the development of these responses in Jalpha18-deficient recipients following OVA-BMDC transfer; the responses were enhanced following OVA/alphaGalCer BMDC transfer. iNKT cells from these IFN-gamma(-/-) mice produced higher levels of IL-13 in vitro compared with WT iNKT cells. These data identify IFN-gamma as playing a critical role in dictating the consequences of iNKT cell activation in the initiation phase of the development of AHR and airway inflammation.


Assuntos
Alérgenos/administração & dosagem , Interferon gama/biossíntese , Células T Matadoras Naturais/imunologia , Ovalbumina/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/prevenção & controle , Transferência Adotiva , Alérgenos/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/prevenção & controle , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/transplante , Feminino , Galactosilceramidas/administração & dosagem , Galactosilceramidas/imunologia , Galactosilceramidas/metabolismo , Mediadores da Inflamação/administração & dosagem , Mediadores da Inflamação/metabolismo , Interferon gama/deficiência , Interferon gama/fisiologia , Intubação Intratraqueal , Ligantes , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Células T Matadoras Naturais/patologia , Ovalbumina/administração & dosagem , Hipersensibilidade Respiratória/patologia
18.
Biomolecules ; 12(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36291615

RESUMO

Previous studies in mice and humans suggesting that γδ T cells play a role in the development of type 1 diabetes have been inconsistent and contradictory. We attempted to resolve this for the type 1 diabetes-prone NOD mice by characterizing their γδ T cell populations, and by investigating the functional contributions of particular γδ T cells subsets, using Vγ-gene targeted NOD mice. We found evidence that NOD Vγ4+ γδ T cells inhibit the development of diabetes, and that the process by which they do so involves IL-17 production and/or promotion of regulatory CD4+ αß T cells (Tregs) in the pancreatic lymph nodes. In contrast, the NOD Vγ1+ cells promote diabetes development. Enhanced Vγ1+ cell numbers in NOD mice, in particular those biased to produce IFNγ, appear to favor diabetic disease. Within NOD mice deficient in particular γδ T cell subsets, we noted that changes in the abundance of non-targeted T cell types also occurred, which varied depending upon the γδ T cells that were missing. Our results indicate that while certain γδ T cell subsets inhibit the development of spontaneous type 1 diabetes, others exacerbate it, and they may do so via mechanisms that include altering the levels of other T cells.


Assuntos
Diabetes Mellitus Tipo 1 , Receptores de Antígenos de Linfócitos T gama-delta , Camundongos , Humanos , Animais , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Camundongos Endogâmicos NOD , Interleucina-17/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Subpopulações de Linfócitos T , Camundongos Endogâmicos C57BL
19.
iScience ; 25(6): 104442, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35707728

RESUMO

Prevention of premalignant lesion progression is a promising approach to reducing lung cancer burden in high-risk populations. Substantial preclinical and clinical evidence has demonstrated efficacy of the prostacyclin analogue iloprost for lung cancer chemoprevention. Iloprost activates peroxisome proliferator-activated receptor gamma (PPARG) to initiate chemopreventive signaling and in vitro, which requires the transmembrane receptor Frizzled9 (FZD9). We hypothesized a Fzd 9 -/- mouse would not be protected by iloprost in a lung cancer model. Fzd 9 -/- mice were treated with inhaled iloprost in a urethane model of lung adenoma. We found that Fzd 9 -/- mice treated with iloprost were not protected from adenoma development compared to wild-type mice nor did they demonstrate increased activation of iloprost signaling pathways. Our results established that iloprost requires FZD9 in vivo for lung cancer chemoprevention. This work represents a critical advancement in defining iloprost's chemopreventive mechanisms and identifies a potential response marker for future clinical trials.

20.
Curr Opin Immunol ; 20(3): 358-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18501573

RESUMO

Natural Killer T cells are a distinct lymphocyte lineage that regulates a broad range of immune responses. NKT cells recognize glycolipids presented by the non-classical MHC molecule CD1d. Structural insight into the TCR/glycolipid/CD1d tri-complex has revealed an unusual and unexpected mode of recognition. Recent studies have also identified some of the signaling events during NKT cell development that give NKT cells their innate phenotype. Pathogen-derived glycolipid antigens continue to be found, and new mechanisms of NKT cell activation have been described. Finally, NKT cells have been shown to be remarkably versatile in function during various immune responses. Whether these extensive functional capacities can be attributed to a single population sensitive to environmental cues or if functionally distinct NKT cell subpopulations exist remains unresolved.


Assuntos
Antígenos CD1/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos/imunologia , Antígenos CD1d , Citocinas/biossíntese , Citotoxicidade Imunológica , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA