Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zoolog Sci ; 40(1): 1-6, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744703

RESUMO

Psychophysiological studies in vertebrates have focused on taxes as indicators of behavioral change. Actually, a considerable number of studies about anxiety-like and anti-anxiety-like behaviors involving geotaxis, scototaxis, and thigmotaxis have been conducted on fish. However, few analyses considering these behaviors based on taxes in fish have been conducted. Here, using goldfish, we measured the time spent in the bright or dark area of a horizontally long rectangular tank (HLRT), in the upper or lower area of a vertically long rectangular tank (VLRT), and in the central or edge area of a circular tank (CT), respectively, for the first 30 min and the last 30 min in a 3-h period after fish had been introduced to tanks. Dark, lower, and edge preference behaviors were observed for the first 30 min in all tanks. While dark and edge preference behaviors were maintained even for the last 30 min, the lower preference was lost. Swimming distance and the number of area crossings in each tank were also compared between the first 30 min and the last 30 min. Both decreased significantly or tended to decrease in the last 30 min in the HLRT and the CT, but no change was observed in the VLRT. These results suggest that, in goldfish, preference behavior is stable for a short time, and that environmental habituation may depend on the shape of the tank and the elapsed time.


Assuntos
Ansiedade , Carpa Dourada , Animais , Carpa Dourada/fisiologia , Atividade Motora/fisiologia , Locomoção , Impostos
2.
Gen Comp Endocrinol ; 299: 113586, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828811

RESUMO

Urotensin II (UII) is involved, via the UII receptor (UTR), in many physiological and pathological processes, including vasoconstriction, locomotion, osmoregulation, immune response, and metabolic syndrome. In silico studies have revealed the presence of four or five distinct UTR (UTR1-UTR5) gene sequences in nonmammalian vertebrates. However, the functionality of these receptor subtypes and their associations to signaling pathways are unclear. In this study, full-length cDNAs encoding four distinct UTR subtypes (UTR1, UTR3, UTR4, and UTR5) were isolated from the western clawed frog (Xenopus tropicalis). In functional analyses, homologous Xenopus UII stimulation of cells expressing UTR1 or UTR5 induced intracellular calcoum mobilization and phosphorylation of extracellular signal-regulated kinase 1/2. Cells expressing UTR3 or UTR4 did not show this response. Furthermore, UII induced the phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) through the UII-UTR1/5 system. However, intracellular cAMP accumulation was not observed, suggesting that UII-induced CREB phosphorylation is caused by a signaling pathway different from that involving Gs protein. In contrast, the administration of UII to cells increased the phosphorylation of guanine nucleotide exchange factor-H1 (GEF-H1) and myosin light chain 2 (MLC2) in all UTR subtypes. These results define four distinct UTR functional subtypes and are consistent with the molecular evolution of UTR subtypes in vertebrates. Further understanding of signaling properties associated with UTR subtypes may help in clarifying the functional roles associated with UII-UTR interactions in nonmammalian vertebrates.


Assuntos
Regulação da Expressão Gênica/genética , Urotensinas/metabolismo , Animais , Anuros , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 517(3): 433-438, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31376933

RESUMO

Neuromedin U (NMU) plays important roles in energy homeostasis in rodents and birds. Previously, our group has isolated four cDNAs encoding precursor proteins of NMU from the goldfish brain and gut, and it was assumed that these transcripts are produced by alternative splicing. We have also demonstrated that intracerebroventricular (ICV) injection of putative goldfish NMU inhibits food intake. However, as native goldfish NMU has not yet been identified, we attempted to purify it from goldfish brain and gut extracts. To assess NMU activity in fractions at each purification step, we measured changes in the intracellular concentrations of Ca2+ using HEK293 cells expressing goldfish NMU-R1 or -R2. We isolated a 25-amino-acid peptide (NMU-25) from the brain and gut and found that its primary structure is similar to that of mammalian NMU. Another 21-amino-acid peptide (NMU-21) was purified from the brain, but not from the gut. Furthermore, a 9-amino-acid peptide (NMU-9) identical to the C-terminus of NMU-21 and -25 was also isolated from the brain and gut. Treatment with synthetic NMU-9, -21 and -25 dose-dependently increased the intracellular Ca2+ concentration in mammalian cells expressing goldfish NMU-R1 and -R2. We also examined the effect of ICV-administered synthetic goldfish NMUs on goldfish food intake. NMU-25 inhibited food intake to the same degree as NMU-21. However, the inhibitory effect of NMU-9 was slightly weaker than those of NMU-21 and -25. These results indicate that several molecular forms of NMU exist in the goldfish brain and gut, and that all of them play physiological roles via NMU-R1 and NMU-R2.


Assuntos
Encéfalo/metabolismo , Proteínas de Peixes/genética , Trato Gastrointestinal/metabolismo , Carpa Dourada/genética , Neuropeptídeos/genética , Receptores de Neurotransmissores/genética , Sequência de Aminoácidos , Animais , Transporte Biológico , Cálcio/metabolismo , Galinhas , Ingestão de Alimentos/fisiologia , Feminino , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/metabolismo , Proteínas de Peixes/farmacologia , Expressão Gênica , Carpa Dourada/metabolismo , Células HEK293 , Humanos , Masculino , Neuropeptídeos/isolamento & purificação , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Ratos , Receptores de Neurotransmissores/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transgenes
4.
J Pineal Res ; 67(3): e12594, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286565

RESUMO

Astronauts experience osteoporosis-like loss of bone mass because of microgravity conditions during space flight. To prevent bone loss, they need a riskless and antiresorptive drug. Melatonin is reported to suppress osteoclast function. However, no studies have examined the effects of melatonin on bone metabolism under microgravity conditions. We used goldfish scales as a bone model of coexisting osteoclasts and osteoblasts and demonstrated that mRNA expression level of acetylserotonin O-methyltransferase, an enzyme essential for melatonin synthesis, decreased significantly under microgravity. During space flight, microgravity stimulated osteoclastic activity and significantly increased gene expression for osteoclast differentiation and activation. Melatonin treatment significantly stimulated Calcitonin (an osteoclast-inhibiting hormone) mRNA expression and decreased the mRNA expression of receptor activator of nuclear factor κB ligand (a promoter of osteoclastogenesis), which coincided with suppressed gene expression levels for osteoclast functions. This is the first study to report the inhibitory effect of melatonin on osteoclastic activation by microgravity. We also observed a novel action pathway of melatonin on osteoclasts via an increase in CALCITONIN secretion. Melatonin could be the source of a potential novel drug to prevent bone loss during space flight.


Assuntos
Reabsorção Óssea/prevenção & controle , Melatonina/uso terapêutico , Voo Espacial , Animais , Densidade Óssea/efeitos dos fármacos , Calcitonina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Carpa Dourada , Imuno-Histoquímica , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ausência de Peso/efeitos adversos
5.
Int J Psychol ; 54(5): 628-637, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29888390

RESUMO

The purpose of this study was to examine cerebral blood flow in the frontal cortex area during personality self-rating tasks. Our two hypotheses were (1) cerebral blood flow varies based on personality rating condition and (2) cerebral blood flow varies based on the personality traits. This experiment measured cerebral blood flow under 3 personal computer rating conditions and 2 questionnaire conditions. Comparing the rating conditions, the results of the t-test indicated that cerebral blood flow was higher in the questionnaire condition than it was in the personal computer condition. With respect to the Big Five, the result of the correlation coefficient, that is, cerebral blood flow during a personality rating task, changed according to the trait for agreeableness. The results of the analysis of the 5-cluster on individual differences indicated that certain personality traits were related to the factors that increased or decreased cerebral blood flow. An analysis of variance indicated that openness to experience and Behavioural Activation System-drive was significant given that participants with high intellectual curiosity were motivated in this experiment, thus, their cerebral blood flow may have increased. The significance of this experiment was that by employing certain performance measures we could examine differences in physical changes based on personality traits.


Assuntos
Circulação Cerebrovascular/fisiologia , Inventário de Personalidade/estatística & dados numéricos , Personalidade/fisiologia , Adulto , Feminino , Humanos , Internet , Masculino , Projetos Piloto , Inquéritos e Questionários , Adulto Jovem
6.
Biochem Biophys Res Commun ; 469(1): 81-86, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26614909

RESUMO

Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the Gs-protein/cAMP/CRE, G12/13-protein/Rho/SRE, and Gq-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174(th) position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Concentração de Íons de Hidrogênio , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Líquido Intracelular/química , Líquido Intracelular/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Relação Estrutura-Atividade
7.
Biochem Biophys Res Commun ; 457(4): 493-9, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25576873

RESUMO

Mammalian ovarian G-protein-coupled receptor 1 (OGR1) and GPR4 are identified as a proton-sensing G-protein-coupled receptor coupling to multiple intracellular signaling pathways. In the present study, we examined whether zebra fish OGR1 and GPR4 homologs (zOGR1 and zGPR4) could sense protons and activate the multiple intracellular signaling pathways and, if so, whether the similar positions of histidine residue, which is critical for sensing protons in mammalian OGR and GPR4, also play a role to sense protons and activate the multiple signaling pathways in the zebra fish receptors. We found that extracellular acidic pH stimulated CRE-, SRE-, and NFAT-promoter activities in zOGR1 overexpressed cells and stimulated CRE- and SRE- but not NFAT-promoter activities in zGPR4 overexpressed cells. The substitution of histidine residues at the 12th, 15th, 162th, and 264th positions from the N-terminal of zOGR1 with phenylalanine attenuated the proton-induced SRE-promoter activities. The mutation of the histidine residue at the 78th but not the 84th position from the N-terminal of zGPR4 to phenylalanine attenuated the proton-induced SRE-promoter activities. These results suggest that zOGR1 and zGPR4 are also proton-sensing G-protein-coupled receptors, and the receptor activation mechanisms may be similar to those of the mammalian receptors.


Assuntos
Prótons , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
8.
Gen Comp Endocrinol ; 216: 54-63, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25907658

RESUMO

Urotensin II (UII) exhibits diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response via the UII receptor (UTR) in mammals. However, in amphibians the function of the UII-UTR system remains unknown. In the present study, we investigated the potential immune function of UII using leukocytes isolated from the African clawed frog, Xenopus laevis. Stimulation of male frogs with lipopolysaccharide increased mRNA expression of UII and UTR in leukocytes, suggesting that inflammatory stimuli induce activation of the UII-UTR system. Migration assays showed that both UII and UII-related peptide enhanced migration of leukocytes in a dose-dependent manner, and that UII effect was inhibited by the UTR antagonist urantide. Inhibition of Rho kinase with Y-27632 abolished UII-induced migration, suggesting that it depends on the activation of RhoA/Rho kinase. Treatment of isolated leukocytes with UII increased the expression of several cytokine genes including tumor necrosis factor-α, interleukin-1ß, and macrophage migration inhibitory factor, and the effects were abolished by urantide. These results suggest that in amphibian leukocytes the UII-UTR system is involved in the activation of leukocyte migration and cytokine gene expression in response to inflammatory stimuli.


Assuntos
Movimento Celular/genética , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Urotensinas/metabolismo , Xenopus laevis/metabolismo , Animais , Células Cultivadas , Interleucina-1beta/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Urotensinas/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
9.
Horm Behav ; 66(2): 317-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24937437

RESUMO

Orexin acts as an orexigenic factor for the regulation of appetite and rhythmicity in rodents. In goldfish, intracerebroventricular (ICV) administration of orexin A has been shown to affect not only food intake, but also locomotor activity. However, as there is still no information regarding the effect of orexin A on emotional behavior in goldfish, we investigated the effect of orexin A on psychomotor activity in this species. Intracerebroventricular administration of synthetic orexin A at 2 and 4pmol/g body weight (BW) enhanced locomotor activity, and this enhancement by orexin A at 4pmol/g BW was attenuated by treatment with the orexin receptor 1 antagonist, SB334867, at 10pmol/g BW. Since intact goldfish prefer a black to a white background area, or the lower to the upper area of a tank, we used two types of preference tests (black/white and upper/lower tests) for measuring anxiety-like behavior in goldfish. Intracerebroventricular administration of orexin A at 4pmol/g BW shortened the time spent in the white background area, and increased the time taken to move from the lower to the upper area. This action of orexin A mimicked that of the central-type benzodiazepine receptor inverse agonist, FG-7142 (an anxiogenic agent), at 4pmol/g BW. The anxiogenic-like effect of orexin A was abolished by treatment with SB334867 at 10pmol/g BW. These results indicate that orexin A potently affects psychomotor activity in goldfish.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/psicologia , Carpa Dourada/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Atividade Motora/efeitos dos fármacos , Neuropeptídeos/farmacologia , Animais , Benzoxazóis/farmacologia , Carbolinas/farmacologia , Diazepam/farmacologia , Emoções/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Naftiridinas , Neuropeptídeos/antagonistas & inibidores , Orexinas , Ureia/análogos & derivados , Ureia/farmacologia
10.
Peptides ; 178: 171239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723948

RESUMO

Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.


Assuntos
Receptores de Vasopressinas , Transdução de Sinais , Vasotocina , Animais , Vasotocina/farmacologia , Vasotocina/metabolismo , Receptores de Vasopressinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Takifugu/metabolismo , Injeções Intraperitoneais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ansiedade/metabolismo , Ansiedade/induzido quimicamente , Telencéfalo/metabolismo , Telencéfalo/efeitos dos fármacos
11.
Gen Comp Endocrinol ; 188: 118-22, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23321398

RESUMO

Corticotropin-releasing hormone (CRH) is a member of the hypothalamic neuropeptide family that includes urocortins, urotensin I and sauvagine in vertebrates. CRH and urocortin act as anorexigenic factors for satiety regulation in rodents. In a goldfish model, intracerebroventricular (ICV) administration of ovine CRH (oCRH) affects not only food intake, but also locomotor activity. However, there is no information regarding the psychophysiological roles of CRH in goldfish. Therefore, we investigated the effect of oCRH on psychomotor activity in this species. ICV administration of synthetic oCRH at 20 pmol/g body weight (BW) enhanced locomotor activity. Since intact goldfish prefer the lower to the upper area of a tank, we developed a method for measuring the time taken for fish to move from the lower to the upper area. ICV administration of oCRH at 20 pmol/g BW and the central-type benzodiazepine receptor inverse agonist FG-7142 (an anxiogenic agent) at 1-4 pmol/g BW both increased the time taken to move from the lower to the upper area. This anxiogenic-like effect of oCRH was abolished by the CRH receptor antagonist α-helical CRH(9-41) (100 pmol/g BW). These results indicate that CRH can potently affect locomotor and psychomotor activities in goldfish.


Assuntos
Ansiolíticos/farmacologia , Hormônio Liberador da Corticotropina/farmacologia , Carpa Dourada/fisiologia , Animais , Carbolinas/farmacologia , Locomoção/efeitos dos fármacos , Ovinos
12.
Gen Comp Endocrinol ; 185: 44-56, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23399967

RESUMO

Urotensin II (UII) and UII-related peptide (URP) exhibit diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response through UII receptor (UTR), which is expressed in the central nervous system and peripheral tissues of fish and mammals. In amphibians, only UII has been identified. As the first step toward elucidating the actions of UII and URP in amphibians, we cloned and characterized URP and UTR from the African clawed frog Xenopus laevis. Functional analysis showed that treatment of UII or URP with Chinese hamster ovary cells transfected with the cloned receptor increased the intracellular calcium concentration in a concentration-dependent manner, whereas the administration of the UTR antagonist urantide inhibited UII- or URP-induced Ca(2+) mobilization. An immunohistochemical study showed that UTR was expressed in the splenocytes and leukocytes isolated from peripheral blood, suggesting that UII and URP are involved in the regulation of the immune system. UTR was also localized in the apical membrane of the distal tubule of the kidney and in the transitional epithelial cells of the urinary bladder. This result supports the view that the UII/URP-UTR system plays an important role in osmoregulation of amphibians. Interestingly, immunopositive labeling for UTR was first detected in the chondrocytes of various hyaline cartilages (the lung septa, interphalangeal joint and sternum). The expression of UTR was also observed in the costal cartilage, tracheal cartilages, and xiphoid process of the rat. These novel findings probably suggest that UII and URP mediate the formation of the cartilaginous matrix.


Assuntos
Condrócitos/metabolismo , Hormônios Peptídicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cálcio/metabolismo , Cartilagem/metabolismo , Cricetinae , Cricetulus , Feminino , Hialina/metabolismo , Masculino , Fragmentos de Peptídeos/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Alinhamento de Sequência , Distribuição Tecidual , Urotensinas/farmacologia
13.
Cell Tissue Res ; 350(1): 167-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22729486

RESUMO

Somatolactin (SL) is a pituitary hormone belonging to the growth hormone/prolactin family of adenohypophyseal hormones. In teleost fish, SL is encoded by one or two paralogous genes, namely SL-α and -ß. Our previous studies have revealed that pituitary adenylate-cyclase-activating polypeptide stimulates SL release from cultured goldfish pituitary cells, whereas melanin-concentrating hormone suppresses this release. As in other fish, the goldfish possesses SL-α and -ß. So far, however, no useful means of detecting the respective SLs immunologically in this species has been possible. In order to achieve this aim, we raised rabbit antisera against synthetic peptide fragments deduced from the goldfish SL-α and -ß cDNA sequences. Using these antisera, we observed adenohypophyseal cells showing SL-α- and -ß-like immunoreactivities in the goldfish pituitary, especially the pars intermedia (PI). Several cells in the PI showed the colocalization of SL-α- and -ß-like immunoreactivities. Then, using single-cell polymerase chain reaction with laser microdissection, we examined SL-α and -ß gene expression in adenohypophyseal cells showing SL-α- or -ß-like immunoreactivity. Among cultured pituitary cells, we observed three types of cell: those that possess transcripts of SL-α, -ß, or both. These results suggest a polymorphism of SL-producing cells in the goldfish pituitary.


Assuntos
Proteínas de Peixes/metabolismo , Glicoproteínas/metabolismo , Carpa Dourada/metabolismo , Hipófise/citologia , Hipófise/metabolismo , Hormônios Hipofisários/metabolismo , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/imunologia , Hormônio do Crescimento , Soros Imunes/imunologia , Imuno-Histoquímica , Lasers , Microdissecção , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Hormônios Hipofisários/química , Hormônios Hipofisários/genética , Hormônios Hipofisários/imunologia , Prolactina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
14.
Gen Comp Endocrinol ; 178(3): 539-45, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22776445

RESUMO

Ghrelin has been identified in rainbow trout and goldfish, and it has been shown to regulate growth hormone release and food intake in these species as seen in mammals. The aim of this study was to investigate the functional role of ghrelin in regulation of gastrointestinal contractility in both fishes. Neither rainbow trout ghrelin nor rat ghrelin affected the contractility of gastrointestinal strips of rainbow trout. Similarly, goldfish ghrelin-17 and rat ghrelin did not cause marked contraction in the goldfish intestinal bulb. Detail examinations using the goldfish intestine revealed that human neurotensin, substance-P, goldfish neuromedine-U and carbachol showed apparent contractile activities in the intestinal strips. Electrical field stimulation (EFS, 1-20 Hz) caused a frequency-dependent contraction of the intestinal bulb. Atropine partially inhibited and tetrodotoxin abolished the EFS-induced contraction. Pretreatments with goldfish ghrelin-17 and rat ghrelin did not modify the EFS-induced contraction. The mRNAs of two types of growth hormone secretagogue receptor (GHS-R), GHS-R1a-1 and GHS-R1a-2, were detected in the goldfish intestine, and the expression level of GHS-R1a-2 was 4-times higher than that of GHS-R1a-1. The expression levels of GHS-R1a-1 and GHS-R1a-2 in four regions of the goldfish intestine (intestinal bulb, intestine-1, intestine-2 and intestine-3) were almost the same. In conclusion, ghrelin does not affect gastrointestinal contractility of the rainbow trout and goldfish, although GHSR-like receptor/GHS-R1a is expressed entire intestine. These results suggest diversity of ghrelin function in vertebrates.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Grelina/farmacologia , Animais , Carpa Dourada , Humanos , Oncorhynchus mykiss , Ratos , Receptores de Grelina/genética , Receptores de Grelina/metabolismo
15.
Peptides ; 156: 170846, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905944

RESUMO

Neuromedin U (NMU) is a multifunctional neuropeptide implicated in regulation of smooth muscle contraction in the circulatory and digestive systems, energy homeostasis and the stress response, but especially food intake in vertebrates. Recent studies have indicated the possible involvement of NMU in the regulation of psychomotor activity in rodents. We have identified four cDNAs encoding three putative NMU variants (NMU-21, -25 and -38) from the goldfish brain and intestine. Recently, we have also purified these NMUs and the truncated C-terminal form NMU-9 from these tissues, and demonstrated their anorexigenic action in goldfish. However, there is no information on the brain localization of NMU-like immunoreactivity and the psychophysiological roles of NMU in fish. Here, we investigated the brain distribution of NMU-like immunoreactivity and found that it was localized throughout the fore- and mid-brains. We subsequently examined the effect of intracerebroventricular (ICV) administration of NMU-21, which is abundant only in the brain on psychomotor activity in goldfish. As goldfish prefer the lower to the upper area of a tank, we developed an upper/lower area preference test in a tank for evaluating the psychomotor activity of goldfish using a personal tablet device without an automatic behavior-tracking device. ICV administration of NMU-21 at 10 pmol g-1 body weight (BW) prolonged the time spent in the upper area of the tank, and this action mimicked that of ICV administration of the central-type benzodiazepine receptor (CBR) agonist tofisopam at 100 pmol g-1 BW. These results suggest that NMU-21 potently induces anxiolytic-like action in the goldfish brain.


Assuntos
Ansiolíticos , Neuropeptídeos , Hormônios Peptídicos , Animais , Encéfalo/metabolismo , Carpa Dourada/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores de GABA-A
16.
J Exp Zool B Mol Dev Evol ; 316B(2): 135-45, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21328529

RESUMO

A full-length cDNA cloning and tissue distribution of epithelial sodium channel (ENaC) protein were studied during ontogeny by immunohistochemistry in the external gills, and the kidney, pronephros and mesonephros, of the Japanese black salamander, Hynobius nigrescens (Family Hynobiidae; a primitive caudate species). The amino acid sequence of Hynobius ENaCα is 64 and 63% identical to Bufo ENaCα and Rat ENaCα, respectively. In aquatic larva salamander at the digit differentiation stage, Hynobius ENaCα mRNA was expressed in the external gills and pronephros. In the adult, the mRNA was expressed in the skin and the mesonephros. In the larvae, juvenile, and adult specimens, Hynobius ENaCα immunoreactivity was observed at the apical cell membrane of the external gills, late parts of the distal tubules, and mesonephric duct in the kidney. Colocalization of the apical Hynobius ENaCα and the basolateral Na(+) ,K(+) -ATPase was observed in the tubular cells of pronephros and mesonephros. These results suggest that Hynobius ENaCα plays an important role in the regulation of sodium transport in the external gills and pronephros of aquatic larvae, and in the skin and mesonephros of terrestrial adult. This is the first study to indicate ENaC expression during ontogeny in amphibians. Since no orthologs or paralogs for ENaC have been found, so far, in databases of the genomes of teleosts, it is assumed that ENaC might have played a role in terrestriality during the evolution of early tetrapods, the origin of lissamphibians.


Assuntos
Canais Epiteliais de Sódio/biossíntese , Brânquias/fisiologia , Rim/fisiologia , Urodelos/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Canais Epiteliais de Sódio/genética , Imuno-Histoquímica , Transporte de Íons/fisiologia , Dados de Sequência Molecular , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
17.
Reproduction ; 141(2): 163-71, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21071464

RESUMO

The developing acrosome in spermatids contains pituitary adenylate cyclase-activating polypeptide (PACAP). However, the role of the acrosomal PACAP remains unclear because it has not been detected in mature spermatids and sperm. We reinvestigated whether the sperm acrosome contains PACAP. An antiserum produced against PACAP reacted to the anterior acrosome in epididymal sperm fixed under mild conditions, suggesting that PACAP acts on oocytes and/or cumulus cells at the site of fertilization. Immunolabeling and RT-PCR demonstrated the presence of PACAP type I receptor, a PACAP-specific receptor, in postovulatory cumulus cells. To investigate the role of PACAP in fertilization, we pretreated cumulus-oocyte complexes with the polypeptide. At a low concentration of sperm, the fertilization rate was significantly enhanced by PACAP in a dose-dependent manner. Sperm penetration through the oocyte investment, cumulus layer, and zona pellucida was also enhanced by PACAP. The enhancement was probably due to an enhancement in sperm motility and the zona-induced acrosome reaction, which were stimulated by a cumulus cell-releasing factor. Indeed, PACAP treatment increased the secretion of progesterone from the cumulus-oocyte complexes. These results strongly suggest that in response to PACAP, cumulus cells release a soluble factor that probably stimulates sperm motility and the acrosome reaction, thereby promoting fertilization.


Assuntos
Células do Cúmulo/metabolismo , Fertilização/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Espermatozoides/metabolismo , Acrossomo/metabolismo , Animais , Meios de Cultivo Condicionados/farmacologia , Feminino , Fertilização in vitro , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oócitos/fisiologia , Progesterona/metabolismo , Prostaglandinas/metabolismo , RNA Mensageiro/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Motilidade dos Espermatozoides , Interações Espermatozoide-Óvulo , Espermatozoides/citologia
18.
Zoolog Sci ; 28(12): 882-90, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22132785

RESUMO

Neuropeptide tyrosine (NPY) is a potent orexigenic neuropeptide implicated in feeding regulation in rodents. However, the involvement of NPY in feeding behavior has not well been studied in fish. Therefore, we investigated the role of NPY in food intake using a tiger puffer (Takifugu rubripes) model. We observed the distribution of NPY-like immunoreactivity in the brain. Neuronal cell bodies containing NPY were located in the telencephalon, hypothalamus, mesencephalon, and medulla oblongata, and their nerve fibers were also found throughout the brain. We cloned two cDNAs, encoding NPYa and NPYb orthologs, respectively, from the brain, and also confirmed two genes encoding these NPYs in the Takifugu genome database. We examined the distribution of these transcripts in the brain using real-time PCR. Levels of NPYa mRNA in the telencephalon, mesencephalon and hypothalamus were much higher than in the medulla oblongata and cerebellum, whereas levels of NPYb mRNA in the medulla oblongata were higher than in other regions. We also examined prandial effects on the expression level of these transcripts in the telencephalon and hypothalamus. NPYa mRNA levels in the hypothalamus, but not in the telencephalon, obtained from fish fasted for one week were higher than those in fish that had been fed normally. The level was decreased at 2 h after feeding. Levels of NPYb mRNA were not affected by prandial conditions. These results suggest that NPY is present throughout the brain, and that NPYa, but not NPYb, in the hypothalamus is involved in the feeding regulation in the tiger puffer.


Assuntos
Clonagem Molecular , Regulação da Expressão Gênica/fisiologia , Neuropeptídeo Y/metabolismo , RNA Mensageiro/metabolismo , Takifugu/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Alimentos , Dados de Sequência Molecular , Neuropeptídeo Y/genética , Filogenia , Transporte Proteico , RNA Mensageiro/genética , Takifugu/genética
19.
Peptides ; 145: 170623, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375685

RESUMO

α-Melanocyte-stimulating hormone (α-MSH) is a body pigmentation-regulating hormone secreted from the intermediate lobe of the pituitary in vertebrates. It is also produced in the brain, and acts as an anorexigenic neuropeptide involved in feeding regulation. In rodents, intracerebroventricular (ICV) administration of α-MSH has been shown to affect not only feeding behavior, but also psychomotor activity. However, there is still no information regarding the psychophysiological effects of α-MSH on behavior in fish. Therefore, we examined the effect of synthetic α-MSH on psychomotor activity in goldfish. Since this species prefers the edge to the central area of a tank, we used this as a preference test for assessing psychomotor activity. When α-MSH was administered ICV at 1 and 10 pmol g-1 body weight (BW), the time spent in the edge area of a tank was prolonged at 10 pmol g-1 BW. However, α-MSH at these doses did not affect locomotor activity. The action of α-MSH mimicked those of FG-7142 (a central-type benzodiazepine receptor (CBR) inverse agonist with an anxiogenic effect) at 10 pmol g-1 BW and melanotan II (a melanocortin 4 receptor (MC4R) agonist) at 50 pmol g-1 BW, whereas ICV administration of tofisopam (a CBR agonist with an anxiolytic effect) at 10 pmol g-1 BW prolonged the time spent in the central area. The anxiogenic-like effect of α-MSH was abolished by treatment with the MC4R antagonist HS024 at 50 pmol g-1 BW. These data indicate that α-MSH affects psychomotor activity in goldfish, and exerts an anxiogenic-like effect via the MC4R-signaling pathway.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Carpa Dourada , alfa-MSH/administração & dosagem , Animais , Comportamento Animal/fisiologia , Benzodiazepinas/administração & dosagem , Encéfalo/efeitos dos fármacos , Carbolinas/administração & dosagem , Feminino , Injeções Intraventriculares , Locomoção/efeitos dos fármacos , Masculino , Peptídeos Cíclicos/administração & dosagem , Resposta Táctica/efeitos dos fármacos , alfa-MSH/análogos & derivados
20.
Am J Pathol ; 175(6): 2657-67, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19875502

RESUMO

Tumor blood vessels are thought to contain genetically normal and stable endothelial cells (ECs), unlike tumor cells, which typically display genetic instability. Yet, chromosomal aberration in human tumor-associated ECs (hTECs) in carcinoma has not yet been investigated. Here we isolated TECs from 20 human renal cell carcinomas and analyzed their cytogenetic abnormalities. The degree of aneuploidy was analyzed by fluorescence in situ hybridization using chromosome 7 and chromosome 8 DNA probes in isolated hTECs. In human renal cell carcinomas, 22-58% (median, 33%) of uncultured hTECs were aneuploid, whereas normal ECs were diploid. The mechanisms governing TEC aneuploidy were then studied using mouse TECs (mTECs) isolated from xenografts of human epithelial tumors. To investigate the contribution of progenitor cells to aneuploidy in mTECs, CD133(+) and CD133(-) mTECs were compared for aneuploidy. CD133(+) mTECs showed aneuploidy more frequently than CD133(-) mTECs. This is the first report showing cytogenetic abnormality of hTECs in carcinoma, contrary to traditional belief. Cytogenetic alterations in tumor vessels of carcinoma therefore can occur and may play a significant role in modifying tumor- stromal interactions.


Assuntos
Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Células Endoteliais/patologia , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neovascularização Patológica/genética , Antígeno AC133 , Antígenos CD/biossíntese , Separação Celular , Proteínas Cromossômicas não Histona/biossíntese , Proteínas Cromossômicas não Histona/genética , Aberrações Cromossômicas , Citometria de Fluxo , Glicoproteínas/biossíntese , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Peptídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA