Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Mol Morphol ; 57(2): 101-109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38386083

RESUMO

To identify a new morphological phenotype of erythromycin (EM)-resistant Staphylococcus aureus (S. aureus) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the spa gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant S. aureus is a phenotypical characteristic in these strains.


Assuntos
Farmacorresistência Bacteriana , Eritromicina , Proteína Estafilocócica A , Staphylococcus aureus , Eritromicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Ensaio de Imunoadsorção Enzimática , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
2.
J Neurochem ; 166(4): 720-746, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337846

RESUMO

Krabbe disease is an inherited demyelinating disease caused by a genetic deficiency of the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase (GALC). The Twitcher (Twi) mouse is a naturally occurring, genetically and enzymatically authentic mouse model that mimics infantile-onset Krabbe disease. The major substrate for GALC is the myelin lipid GalCer. However, the pathogenesis of Krabbe disease has long been explained by the accumulation of psychosine, a lyso-derivative of GalCer. Two metabolic pathways have been proposed for the accumulation of psychosine: a synthetic pathway in which galactose is transferred to sphingosine and a degradation pathway in which GalCer is deacylated by acid ceramidase (ACDase). Saposin-D (Sap-D) is essential for the degradation of ceramide by ACDase in lysosome. In this study, we generated Twi mice with a Sap-D deficiency (Twi/Sap-D KO), which are genetically deficient in both GALC and Sap-D and found that very little psychosine accumulated in the CNS or PNS of the mouse. As expected, demyelination with the infiltration of multinucleated macrophages (globoid cells) characteristic of Krabbe disease was milder in Twi/Sap-D KO mice than in Twi mice both in the CNS and PNS during the early disease stage. However, at the later disease stage, qualitatively and quantitatively comparable demyelination occurred in Twi/Sap-D KO mice, particularly in the PNS, and the lifespans of Twi/Sap-D KO mice were even shorter than that of Twi mice. Bone marrow-derived macrophages from both Twi and Twi/Sap-D KO mice produced significant amounts of TNF-α upon exposure to GalCer and were transformed into globoid cells. These results indicate that psychosine in Krabbe disease is mainly produced via the deacylation of GalCer by ACDase. The demyelination observed in Twi/Sap-D KO mice may be mediated by a psychosine-independent, Sap-D-dependent mechanism. GalCer-induced activation of Sap-D-deficient macrophages/microglia may play an important role in the neuroinflammation and demyelination in Twi/Sap-D KO mice.


Assuntos
Leucodistrofia de Células Globoides , Camundongos , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Saposinas/genética , Psicosina/metabolismo , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Modelos Animais de Doenças
3.
Environ Sci Technol ; 43(6): 2054-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368213

RESUMO

The electrochemical removal of bromate ion (BrO3-) was investigated using a two-compartment electrolytic flow cell with activated carbon felt electrodes. Bromate ion removal and corresponding Br- increase was observed during electrochemical treatment whereas the activated carbon felt used possessed no catalytic effect on BrO3- reduction. The BrO3-reduction rate was accelerated at lower pH, which also improved current efficiency. Transition of chemical equilibrium of the BrO3- reductive reaction was theorized as the reason for pH dependency of the BrO3- reduction.The electrochemicaltreatment of BrO3- -contaminated tap water resulted in a rapid decrease in BrO3- concentration from 100 to 48 microg/L with a contact time of 9.2 s. Thus, electrochemical treatment allowed the rapid removal of BrO3-. However, competitive hydrogen evolution at the cathodes reduced current efficiency of BrO3- reduction. Standard potentials of corresponding anodic and cathodic reactions suggested that electrolysis at a terminal voltage less than 1.229 V would promote BrO3- reduction without hydrogen evolution. However, the activated carbon felt electrode did not function well at a terminal voltage of 1.0 V. Accordingly, the development of an electrode material with high catalytic activity will be required to improve current efficiency.


Assuntos
Bromatos/química , Carbono/química , Técnicas Eletroquímicas/instrumentação , Poluentes Químicos da Água/química , Eletrodos , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA