Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 25(10): 1112-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163659

RESUMO

Polysialic acid (polySia) is a linear polymer of sialic acid that modifies neural cell adhesion molecule (NCAM) in the vertebrate brain. PolySia is a large and exclusive molecule that functions as a negative regulator of cell-cell interactions. Recently, we demonstrated that polySia can specifically bind fibroblast growth factor 2 (FGF2) and BDNF; however, the protective effects of polySia on the proteolytic cleavage of these proteins remain unknown, although heparin/heparan sulfate has been shown to impair the cleavage of FGF2 by trypsin. Here, we analyzed the protective effects of polySia on the proteolytic cleavage of FGF2 and proBDNF/BDNF. We found that polySia protected intact FGF2 from tryptic activity via the specific binding of extended polySia chains on NCAM to FGF2. Oligo/polySia also functioned to impair the processing of proBDNF by plasmin via binding of oligo/polySia chains on NCAM. In addition, the polySia structure synthesized by mutated polysialyltransferase, ST8SIA2/STX(SNP7), which was previously identified from a schizophrenia patient, was impaired for these functions compared with polySia produced by normal ST8SIA2. Taken together, these data suggest that the protective effects of polySia toward FGF2 and proBDNF may be involved in the regulation of the concentrations of these neurologically active molecules.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Fator 2 de Crescimento de Fibroblastos/química , Precursores de Proteínas/química , Ácidos Siálicos/química , Fibrinolisina/química , Humanos , Cinética , Ligação Proteica , Proteólise , Tripsina/química
2.
Neurochem Res ; 33(11): 2302-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18473171

RESUMO

Volatile anesthetics isoflurane possibly improves the ischemic brain injury. However, its molecular actions are still unclear. In ischemia, protein kinase C (PKC)gamma and calcium/calmodulin dependent protein kinase II (CaMKII)-alpha are persistently translocated from cytosol to cell membranes, and diminish these translocation suggested to be neuroprotective. We thus tested a hypothesis that isoflurane inhibits PKCgamma and CaMKII-alpha translocation after ischemic brain insults. C57Bl/6J male mice were made to inhale 1 or 2 MAC isoflurane, after which 3 or 5 min cerebral ischemia was induced by decapitation. The sampled cerebrum cortex was then homogenized and centrifuged into crude synaptosomal fractions (P2), cytosolic fractions (S3), and particulate fractions (P3). CaMKII-alpha and PKCgamma levels of these fractions were analyzed by immunoblotting. PKCgamma and CaMKII-alpha are translocated to synaptic membrane from cytosol by cerebral ischemia, although isoflurane significantly inhibited such translocation. These results may explain in part the cellular and molecular mechanisms of neuroprotective effects of isoflurane.


Assuntos
Anestésicos Inalatórios/farmacologia , Isquemia Encefálica/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Isoflurano/farmacologia , Proteína Quinase C/antagonistas & inibidores , Membranas Sinápticas/efeitos dos fármacos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Eletroforese em Gel de Poliacrilamida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/metabolismo , Transporte Proteico , Membranas Sinápticas/enzimologia
3.
Curr Biol ; 12(1): 73-7, 2002 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-11790307

RESUMO

The evolutionarily conserved Hus1 proteins function in DNA damage response pathways that serve to maintain genomic stability. Cells lacking mouse Hus1 are hypersensitive to certain genotoxins, and we have explored the molecular basis for this defect by examining how Hus1 inactivation affects genotoxin-induced signaling events. p53 accumulation and activation in response to DNA damage appeared normal in Hus1 null cells. Likewise, Hus1 was dispensable for genotoxin-induced Chk2 phosphorylation. In contrast, Chk1 phosphorylation after genotoxic stress was greatly reduced in the absence of Hus1, but was restored in Hus1 null fibroblasts complemented by infection with a Hus1-expressing retrovirus. These results demonstrate that mouse Hus1 is required for a specific subset of DNA damage signaling events and functions to promote genotoxin-induced Chk1 phosphorylation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Proteínas Quinases/metabolismo , Transdução de Sinais , Animais , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Reparo do DNA , Camundongos , Camundongos Knockout , Fosforilação/efeitos da radiação , Radiação Ionizante , Proteínas de Schizosaccharomyces pombe , Proteína Supressora de Tumor p53/fisiologia , Raios Ultravioleta/efeitos adversos
4.
Science ; 316(5828): 1194-8, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17525340

RESUMO

The BRCT repeats of the breast and ovarian cancer predisposition protein BRCA1 are essential for tumor suppression. Phosphopeptide affinity proteomic analysis identified a protein, Abraxas, that directly binds the BRCA1 BRCT repeats through a phospho-Ser-X-X-Phe motif. Abraxas binds BRCA1 to the mutual exclusion of BACH1 (BRCA1-associated C-terminal helicase) and CtIP (CtBP-interacting protein), forming a third type of BRCA1 complex. Abraxas recruits the ubiquitin-interacting motif (UIM)-containing protein RAP80 to BRCA1. Both Abraxas and RAP80 were required for DNA damage resistance, G(2)-M checkpoint control, and DNA repair. RAP80 was required for optimal accumulation of BRCA1 on damaged DNA (foci) in response to ionizing radiation, and the UIM domains alone were capable of foci formation. The RAP80-Abraxas complex may help recruit BRCA1 to DNA damage sites in part through recognition of ubiquitinated proteins.


Assuntos
Proteína BRCA1/fisiologia , Proteínas de Transporte/fisiologia , Dano ao DNA , Reparo do DNA , Proteínas Nucleares/fisiologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Endodesoxirribonucleases , Células HeLa , Chaperonas de Histonas , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína
5.
Cell ; 129(2): 289-301, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17412408

RESUMO

Fanconi anemia (FA) is a developmental and cancer-predisposition syndrome caused by mutations in genes controlling DNA interstrand crosslink repair. Several FA proteins form a ubiquitin ligase that controls monoubiquitination of the FANCD2 protein in an ATR-dependent manner. Here we describe the FA protein FANCI, identified as an ATM/ATR kinase substrate required for resistance to mitomycin C. FANCI shares sequence similarity with FANCD2, likely evolving from a common ancestral gene. The FANCI protein associates with FANCD2 and, together, as the FANCI-FANCD2 (ID) complex, localize to chromatin in response to DNA damage. Like FANCD2, FANCI is monoubiquitinated and unexpectedly, ubiquitination of each protein is important for the maintenance of ubiquitin on the other, indicating the existence of a dual ubiquitin-locking mechanism required for ID complex function. Mutation in FANCI is responsible for loss of a functional FA pathway in a patient with Fanconi anemia complementation group I.


Assuntos
Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular , Linhagem Celular , Dano ao DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Humanos , Lisina/metabolismo , Dados de Sequência Molecular , Mutação , Fase S , Strongylocentrotus purpuratus
6.
Science ; 316(5828): 1160-6, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17525332

RESUMO

Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Ciclo Celular/fisiologia , Linhagem Celular , Biologia Computacional , Sequência Consenso , Replicação do DNA/fisiologia , Humanos , Imunoprecipitação , Marcação por Isótopo , Camundongos , Células NIH 3T3 , Fosforilação , Proteoma/isolamento & purificação , Proteoma/fisiologia , RNA Interferente Pequeno , Transdução de Sinais , Especificidade por Substrato
7.
Science ; 298(5597): 1435-8, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12364621

RESUMO

53BP1 binds to the tumor suppressor protein p53 and has a potential role in DNA damage responses. We used small interfering RNA (siRNA) directed against 53BP1 in mammalian cells to demonstrate that 53BP1 is a key transducer of the DNA damage checkpoint signal. 53BP1 was required for p53 accumulation, G2-M checkpoint arrest, and the intra-S-phase checkpoint in response to ionizing radiation. 53BP1 played a partially redundant role in phosphorylation of the downstream checkpoint effector proteins Brca1 and Chk2 but was required for the formation of Brca1 foci in a hierarchical branched pathway for the recruitment of repair and signaling proteins to sites of DNA damage.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Fase G2 , Peptídeos e Proteínas de Sinalização Intracelular , Mitose , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Fase S , Proteína BRCA1/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , DNA/biossíntese , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , RNA Interferente Pequeno , Radiação Ionizante , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA