Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772420

RESUMO

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Assuntos
Isópteros , Partenogênese , Animais , Isópteros/fisiologia , Isópteros/genética , Feminino , Reprodução , Comportamento Social
2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903643

RESUMO

Although males are a ubiquitous feature of animals, they have been lost repeatedly in diverse lineages. The tendency for obligate asexuality to evolve is thought to be reduced in animals whose males play a critical role beyond the contribution of gametes, for example, via care of offspring or provision of nuptial gifts. To our knowledge, the evolution of obligate asexuality in such species is unknown. In some species that undergo frequent inbreeding, males are hypothesized to play a key role in maintaining genetic heterozygosity through the possession of neo-sex chromosomes, although empirical evidence for this is lacking. Because inbreeding is a key feature of the life cycle of termites, we investigated the potential role of males in promoting heterozygosity within populations through karyotyping and genome-wide single-nucleotide polymorphism analyses of the drywood termite Glyptotermes nakajimai We showed that males possess up to 15 out of 17 of their chromosomes as sex-linked (sex and neo-sex) chromosomes and that they maintain significantly higher levels of heterozygosity than do females. Furthermore, we showed that two obligately asexual lineages of this species-representing the only known all-female termite populations-arose independently via intraspecific hybridization between sexual lineages with differing diploid chromosome numbers. Importantly, these asexual females have markedly higher heterozygosity than their conspecific males and appear to have replaced the sexual lineages in some populations. Our results indicate that asexuality has enabled females to supplant a key role of males.


Assuntos
Evolução Biológica , Isópteros/genética , Reprodução Assexuada/genética , Cromossomos Sexuais , Animais , Cromossomos de Insetos , Feminino , Estudo de Associação Genômica Ampla , Masculino , Polimorfismo de Nucleotídeo Único
3.
Proc Biol Sci ; 290(1990): 20221942, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36598016

RESUMO

Caste-based reproductive division of labour in social insects is built on asymmetries in resource allocation within colonies. Kings and queens dominantly consume limited resources for reproduction, while non-reproductive castes such as workers and soldiers help reproductive castes. Studying the regulation of such asymmetries in resource allocation is crucial for understanding the maintenance of sociality in insects, although the molecular background is poorly understood. We focused on uric acid, which is reserved and used as a valuable nitrogen source in wood-eating termites. We found that king- and queen-specific degradation of uric acid contributes to reproduction in the subterranean termite Reticulitermes speratus. The urate oxidase gene (RsUAOX), which catalyses the first step of nitrogen recycling from stored uric acid, was highly expressed in mature kings and queens, and upregulated with differentiation into neotenic kings/queens. Suppression of uric acid degradation decreased the number of eggs laid per queen. Uric acid was shown to be provided by workers to reproductive castes. Our results suggest that the capacity to use nitrogen, which is essential for the protein synthesis required for reproduction, maintains colony cohesion expressed as the reproductive monopoly held by kings and queens.


Assuntos
Isópteros , Animais , Isópteros/fisiologia , Ácido Úrico/metabolismo , Reprodução/fisiologia , Comportamento Social
4.
Dev Growth Differ ; 65(7): 374-383, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37357446

RESUMO

Division of labor is a prominent feature of social insect societies, where different castes engage in different specialized tasks. As brain differences are associated with behavioral differences, brain anatomy may be linked to caste polymorphism. Here, we show that termite brain morphology changes markedly with caste differentiation and age in the termite, Reticulitermes speratus. Brain morphology was shown to be associated with reproductive division of labor, with reproductive individuals (alates and neotenic reproductives) having larger brains than nonreproductives (workers and soldiers). Micro-computed tomography (CT) imaging and dissection observations showed that the king's brain morphology changed markedly with shrinkage of the optic lobes during their long life in the dark. Behavioral experiments showed that mature primary kings lose visual function as a result of optic lobe shrinkage. These results suggested that termites restructure their nervous systems to perform necessary tasks as they undergo caste differentiation, and that they also show flexible changes in brain morphology even after the final molt. This study showed that brain morphology in social insects is linked to caste and aging, and that the evolution of the division of labor is underpinned by the development of diverse neural systems for specialized tasks.


Assuntos
Isópteros , Humanos , Animais , Isópteros/fisiologia , Microtomografia por Raio-X , Envelhecimento , Encéfalo/diagnóstico por imagem
5.
Naturwissenschaften ; 110(4): 35, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458826

RESUMO

Colony size in social insects is one of the most important factors in shaping their self-organized system. It affects a wide variety of traits such as foraging and defense strategies, social immune responses, the degree of polymorphism, and reproductive output. However, colony size estimation of subterranean termites in the field has been challenging, due to their extremely cryptic biology and multiple site-nesting behavior. Since natural selection favors workers that maximize the number of their siblings, the amount of egg production may reflect the number of workers in the colony. Here, we report a method for inferring colony size in the field using total egg production in each colony from a subterranean termite, Reticulitermes speratus. Our investigation of field colonies revealed that the body weight of queens reaches a peak and had the largest variance in June and July and accurately predicts the number of eggs laid by the queen per 24 h. Using laboratory-reared colonies, we found that the total egg production in each colony is proportional to the number of workers. We also estimated the colony size of 198 field colonies and found that the median and maximum colony size was 24,500 and 451,800 workers per colony. The method for inferring colony size presented here may also be applicable to termite species with a clear seasonality in egg production. The colony size estimate will contribute to understanding the life history strategies and social systems of termites.


Assuntos
Isópteros , Animais , Reprodução/fisiologia , Fertilidade , Fenótipo
6.
Biol Lett ; 17(12): 20210540, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932926

RESUMO

Predation by larger conspecifics poses a major threat to small juveniles in many animal species. However, in social insects, raids perpetrated by large colonies may provide smaller colonies with opportunities for parasitization. Herein, in the termite Reticulitermes speratus, we demonstrate that small incipient colonies parasitize large mature colonies through egg abduction when attacked by raiding conspecifics. We observed that the eggs of incipient colonies were brought into raiding colonies while their parents were killed during the attack. In this species, unmated females found new colonies with female-female (FF) cooperation, in addition to the typical monogamous colony foundation. Interestingly, the abducted eggs of FF pairs developed into nymphs (reproductive caste) in the raiding colonies, whereas the eggs of male-female (MF) pairs developed into workers (non-reproductive caste). Parthenogenetic eggs are known to be developmentally predisposed to becoming female reproductives owing to genomic imprinting in termites. This study demonstrates that the plundering of small colonies by larger conspecific colonies not only results in the extinction of the weaker colonies, but also serves as a strategy that incipient colonies use to obtain the reproductive position in large colonies by stealth. The results elucidate the diversity and complexity of inter-colonial interactions in social insects.


Assuntos
Isópteros , Animais , Feminino , Impressão Genômica , Humanos , Masculino , Reprodução
7.
Biol Lett ; 16(4): 20200049, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264784

RESUMO

Extreme conditions are normal for animals living in harsh environments. These animals adapt to their habitats and can use difficult conditions by default. Organisms living in enclosed spaces, notably termites in decaying wood, experience low O2 and high CO2 gas conditions due to limited gas exchange and high insect density. Termite queens, in particular, reproduce in royal chambers deep inside the wood, wherein tens of thousands of individuals engage in social labour. Here, we demonstrate that royal chambers in termite nests have low O2 and high CO2 gas concentrations, which enhance egg production by queens. We identified a unique gas condition of royal chambers in the nest of the subterranean termite Reticulitermes speratus, which is characterized by low O2 (15.75%) and high CO2 (4.99%) concentrations. Queens showed significantly greater fecundity under the low O2 and high CO2 gas conditions in the royal chambers than under ambient gas conditions. Quantitative PCR analysis revealed that the royal chamber gas conditions significantly promoted the expression levels of the vitellogenin genes RsVg1, RsVg2 and RsVg3 in queens compared with ambient gas conditions. This study highlights the adaptation of animals that live in closed habitats, which are hypoxic and hypercapnic as the result of their own metabolism, so as to have a high fitness in such environmental conditions.


Assuntos
Isópteros , Animais , Dióxido de Carbono , Humanos , Insetos , Reprodução , Madeira
8.
J Chem Ecol ; 46(5-6): 483-489, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32440722

RESUMO

Pheromone communication helps maintaining the sophisticated colony organization in social insects. In the termite Reticulitermes speratus, there are two functionally distinct soldier groups: royal guards and entrance guards. Royal guards protect kings and queens in the innermost part of the nest, whereas entrance guards prevent predators from intruding into the nest at the periphery. A recent study revealed that younger and older soldiers work as royal and entrance guards, respectively. This age-dependent distribution is thought to help workers to recognize where in the nest they are located. However, it is not known whether workers can discriminate the age of soldiers. Here, we show that the abundance of soldier pheromone changes with age and that workers discriminate a soldier's age by recognizing the pheromone abundance. Gas chromatography-mass spectrometry analysis revealed that the chemical profiles of extracts in three soldier groups of different ages (newly differentiated, royal guard, and entrance guard soldiers) are markedly different. Entrance guard soldiers have the most soldier pheromone among the three age classes. Furthermore, our bioassays suggested that the worker's movement from chamber to chamber is inhibited only when a soldier with less soldier pheromone is located at the chamber entrance. These results suggest that the soldier pheromone functions as a soldier age indicator and that workers change their behavior depending on the age of the soldier defending the chamber entrance. This study contributes to our understanding of the relationship between aging and pheromone communication in social insects.


Assuntos
Isópteros/fisiologia , Feromônios/metabolismo , Fatores Etários , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Fatores Sexuais
9.
BMC Biol ; 16(1): 96, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30249269

RESUMO

BACKGROUND: Sexual reproduction is the norm in almost all animal species, and in many advanced animal societies, both males and females participate in social activities. To date, the complete loss of males from advanced social animal lineages has been reported only in ants and honey bees (Hymenoptera), whose workers are always female and whose males display no helping behaviors even in normal sexual species. Asexuality has not previously been observed in colonies of another major group of social insects, the termites, where the ubiquitous presence of both male and female workers and soldiers indicate that males play a critical role beyond that of reproduction. RESULTS: Here, we report asexual societies in a lineage of the termite Glyptotermes nakajimai. We investigated the composition of mature colonies from ten distinct populations in Japan, finding six asexual populations characterized by a lack of any males in the reproductive, soldier, and worker castes of their colonies, an absence of sperm in the spermathecae of their queens, and the development of unfertilized eggs at a level comparable to that for the development of fertilized eggs in sexual populations of this species. Phylogenetic analyses indicated a single evolutionary origin of the asexual populations, with divergence from sampled sexual populations occurring about 14 million years ago. Asexual colonies differ from sexual colonies in having a more uniform head size in their all-female soldier caste, and fewer soldiers in proportion to other individuals, suggesting increased defensive efficiencies arising from uniform soldier morphology. Such efficiencies may have contributed to the persistence and spread of the asexual lineage. Cooperative colony foundation by multiple queens, the single-site nesting life history common to both the asexual and sexual lineages, and the occasional development of eggs without fertilization even in the sexual lineage are traits likely to have been present in the ancestors of the asexual lineage that may have facilitated the transition to asexuality. CONCLUSIONS: Our findings demonstrate that completely asexual social lineages can evolve from mixed-sex termite societies, providing evidence that males are dispensable for the maintenance of advanced animal societies in which they previously played an active social role.


Assuntos
Evolução Biológica , Isópteros/fisiologia , Fenótipo , Animais , Feminino , Masculino , Reprodução Assexuada
10.
Am Nat ; 191(6): 677-690, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750562

RESUMO

Eusocial insects exhibit the most striking example of phenotypic plasticity. There has been a long controversy over the factors determining caste development of individuals in social insects. Here we demonstrate that parental phenotypes influence the social status of offspring not through genetic inheritance but through genomic imprinting in termites. Our extensive field survey and genetic analysis of the termite Reticulitermes speratus show that its breeding system is inconsistent with a genetic caste determination model. We therefore developed a genomic imprinting model, in which queen- and king-specific epigenetic marks antagonistically influence sexual development of offspring. The model accounts for all known empirical data on caste differentiation of R. speratus and other related species. By conducting colony-founding experiments and additively incorporating relevant socio-environmental factors into our genomic imprinting model, we show the relative importance of genomic imprinting and environmental factors in caste determination. The idea of epigenetic inheritance of sexual phenotypes solves the puzzle of why parthenogenetically produced daughters carrying only maternal chromosomes exclusively develop into queens and why parental phenotypes (nymph- or worker-derived reproductives) strongly influence caste differentiation of offspring. According to our model, the worker caste is seen as a "neuter" caste whose sexual development is suppressed due to counterbalanced maternal and paternal imprinting and opens new avenues for understanding the evolution of caste systems in social insects.


Assuntos
Epigênese Genética , Impressão Genômica , Hierarquia Social , Isópteros/genética , Modelos Biológicos , Animais
11.
Mol Ecol ; 27(23): 4711-4724, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30368959

RESUMO

Identifying traits that facilitate species introductions and successful invasions of ecosystems represents a key issue in ecology. Following their establishment into new environments, many non-native species exhibit phenotypic plasticity with post-introduction changes in behaviour, morphology or life history traits that allow them to overcome the presumed loss of genetic diversity resulting in inbreeding and reduced adaptive potential. Here, we present a unique strategy in the invasive ant Brachyponera chinensis (Emery), in which inbreeding tolerance is a pre-adapted trait for invasion success, allowing this ant to cope with genetic depletion following a genetic bottleneck. We report for the first time that inbreeding is not a consequence of the founder effect following introduction, but it is due to mating between sister queens and their brothers that pre-exists in native populations which may have helped it circumvent the cost of invasion. We show that a genetic bottleneck does not affect the genetic diversity or the level of heterozygosity within colonies and suggest that generations of sib-mating in native populations may have reduced inbreeding depression through purifying selection of deleterious alleles. This work highlights how a unique life history may pre-adapt some species for biological invasions.


Assuntos
Formigas/genética , Genética Populacional , Endogamia , Espécies Introduzidas , Animais , Feminino , Efeito Fundador , Variação Genética , Heterozigoto , Depressão por Endogamia , Japão , Masculino , North Carolina , Seleção Genética
12.
Biol Lett ; 14(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514993

RESUMO

Who should take on risky tasks in an age-heterogeneous society? Life-history theory predicts that, in social insects, riskier tasks should be undertaken by sterile individuals with a shorter life expectancy. The loss of individuals with shorter life expectancy is less costly for colony reproductive success than the loss of individuals with longer life expectancy. Termite colonies have a sterile soldier caste, specialized defenders engaged in the most risky tasks. Here we show that termite soldiers exhibit age-dependent polyethism, as old soldiers are engaged in front-line defence more than young soldiers. Our nest defence experiment showed that old soldiers went to the front line and blocked the nest opening against approaching predatory ants more often than young soldiers. We also found that young soldiers were more biased toward choosing central nest defence as royal guards than old soldiers. These results demonstrate that termite soldiers have age-based task allocation, by which ageing predisposes soldiers to switch to more dangerous tasks. This age-dependent soldier task allocation increases the life expectancy of soldiers, allowing them to promote their lifetime contribution to colony reproductive success.


Assuntos
Formigas/fisiologia , Comportamento Animal , Cadeia Alimentar , Isópteros/fisiologia , Comportamento Predatório , Fatores Etários , Animais , Assunção de Riscos
13.
Naturwissenschaften ; 105(9-10): 52, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30291510

RESUMO

All higher eukaryotes have established symbiotic relationships with diverse microorganisms. One of the most well-characterized symbiotic systems is that of termites and their intestinal microorganisms, which digest cellulose. Recently, diverse types of symbioses between gut microbes and host organisms including humans have received growing attention for various features of their complex interactions beyond nutrition. In termites, researchers are beginning to explore such function of gut symbionts, but only the contribution to internal immunity against entomopathogen is known in a few species. Here, we report that gut symbionts of the dampwood termite Zootermopsis nevadensis protect nests from the spread of the commensal bacterium Serratia marcescens, which has pathogenic potential. Defaunated termites dispersed S. marcescens in the surrounding environment by feeding on the bacteria, which then survived passage through their alimentary tracts, while non-defaunated termites did not. Loss of gut symbionts caused a significant reduction in intestinal acetate, which is an important carbon source for termites. Culture experiments showed that acetate had significant inhibitory effects on S. marcescens at a concentration as low as 12 mM, which indicated that the intestinal acetate of non-defaunated termites (40-130 mM) was capable of suppressing this bacterium. These results suggest that digestive derivatives produced by intestinal symbionts play an essential role in nest hygiene in addition to their nutritional function for termites. Our study provides a better understanding of the multifunctionality of symbiotic relationships in diverse organisms beyond nutrition.


Assuntos
Fenômenos Fisiológicos Bacterianos , Isópteros/microbiologia , Simbiose , Fenômenos Fisiológicos da Nutrição Animal , Animais , Trato Gastrointestinal/microbiologia
14.
Mol Biol Evol ; 33(4): 959-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26659563

RESUMO

Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.


Assuntos
Agaricales/genética , Genômica , Lignina/genética , Basidiomycota/genética , Evolução Molecular , Genoma Fúngico , Anotação de Sequência Molecular , Peroxidases/genética , Filogenia
15.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747483

RESUMO

Division of labour in eusocial insects is characterized by efficient communication systems based on pheromones. Among such insects, termites have evolved specialized sterile defenders, called soldiers. Because they are incapable of feeding themselves, it has been suggested that soldiers are sustained by workers and emit the pheromone arresting workers. However, such a soldier pheromone has not been identified in any termite species, and the details of the soldier-worker interaction remain to be explored. Here, we identified a soldier-specific volatile sesquiterpene as a worker arrestant, which also acts as a primer pheromone regulating soldier differentiation and fungistatic agent in a termite Reticulitermes speratus Chemical analyses revealed that (-)-ß-elemene is the major component of soldier extract, and its authentic standard exhibited arrestant activity to workers and inhibited the differentiation from workers to soldiers. This compound also showed fungistatic activity against entomopathogenic fungi. These suggest that (-)-ß-elemene secreted by soldiers acts not only as a worker arrestant but also as one component of inhibitory primer pheromone and an anti-pathogenic agent. Our study provides novel evidence supporting the multi-functionality of termite soldier pheromone and provides new insights into the role of soldiers and the evolutionary mechanisms of pheromone compounds.


Assuntos
Isópteros/química , Feromônios/química , Sesquiterpenos/química , Animais , Antifúngicos
16.
J Exp Biol ; 220(Pt 1): 63-72, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057829

RESUMO

One major advantage of sexual reproduction over asexual reproduction is its promotion of genetic variation, although it reduces the genetic contribution to offspring. Queens of social insects double their contribution to the gene pool, while overuse of asexual reproduction may reduce the ability of the colony to adapt to environmental stress because of the loss of genetic diversity. Recent studies have revealed that queens of some termite species can solve this tradeoff by using parthenogenesis to produce the next generation of queens and sexual reproduction to produce other colony members. This reproductive system, known as asexual queen succession (AQS), has been identified in the subterranean termites Reticulitermes speratus, Reticulitermes virginicus and Reticulitermes lucifugus and in the Neotropical higher termites Embiratermes neotenicus and Cavitermes tuberosus The studies presented here have uncovered the unusual modes of reproduction in termites and have aimed to identify their underlying mechanisms. The study of AQS, the mixed use of sexual and asexual reproduction, is of fundamental importance as it may provide a key to solve the evolutionary paradox of sex.


Assuntos
Evolução Biológica , Isópteros/fisiologia , Reprodução Assexuada , Animais , Feminino , Impressão Genômica , Isópteros/genética , Masculino , Partenogênese , Feromônios/metabolismo , Reprodução , Razão de Masculinidade , Comportamento Sexual Animal
17.
Proc Natl Acad Sci U S A ; 111(48): 17212-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404335

RESUMO

Males and females are in conflict over genetic transmission in the evolution of parthenogenesis, because it enhances female reproductive output but deprives the males' genetic contribution. For males, any trait that coerces females into sexual reproduction should increase their fitness. However, in the termite Reticulitermes speratus, queens produce their replacements (neotenic queens) parthenogenetically while using normal sexual reproduction to produce other colony members. Here, we show that termite queens produce parthenogenetic offspring in the presence of kings by closing the micropyles (sperm gates; i.e., openings for sperm entry) of their eggs. Our field survey showed that termite eggs show large variation in numbers of micropyles, with some having none. Microsatellite analysis showed that embryos of micropyleless eggs develop parthenogenetically, whereas those of eggs with micropyles are fertilized and develop sexually. Surveys of eggs among queens of different age groups showed that queens begin to lay micropyleless eggs when they are older and thus, need to produce their replacements parthenogenetically. In addition, we found clear seasonality in new neotenic queen differentiation and micropyleless egg production. This micropyle-dependent parthenogenesis is the first identification, to our knowledge, of the mechanism through which females control egg fertilization over time in diploid animals, implying a novel route of the evolution of parthenogenesis in favor of female interests without interference from males.


Assuntos
Isópteros/fisiologia , Óvulo/fisiologia , Partenogênese/fisiologia , Espermatozoides/fisiologia , Animais , Diploide , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Feminino , Fertilização/genética , Fertilização/fisiologia , Genótipo , Isópteros/genética , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Óvulo/metabolismo , Óvulo/ultraestrutura , Partenogênese/genética , Reprodução/genética , Reprodução/fisiologia , Estações do Ano , Espermatozoides/metabolismo , Fatores de Tempo
18.
Cytometry A ; 89(8): 731-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111676

RESUMO

Recent advances in imaging flow cytometry and microfluidic applications have led to the development of suitable mathematical algorithms capable of detecting and identifying targeted cells in images. In contrast to currently existing algorithms, we herein proposed the identification and reconstruction of cell edges based on original approaches that overcome frequent detection limitations such as halos, noise, and droplet boundaries in microfluidic applications. Reconstructed cells are then discriminated between single cells and clusters of round-shaped cells, and cell information such as the area and location of a cell in an image is output. Using this method, 76% of cells detected in an image had an error <5% of the cell area size and 41% of the image had an error <1% of the cell area size (n = 1,000). The method developed in the present study is the first image processing algorithm designed to be flexible in use (i.e. independent of the size of an image, using a microfluidic droplet system or not, and able to recognize cell clusters in an image) and provides the scientific community with a very accurate imaging algorithm in the field of microfluidic applications. © 2016 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/métodos , Técnicas Analíticas Microfluídicas/métodos , Algoritmos , Agregação Celular/genética , Humanos , Imageamento Tridimensional/métodos , Análise de Célula Única/métodos
19.
Mol Phylogenet Evol ; 94(Pt B): 778-790, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541239

RESUMO

Termites of the genus Reticulitermes are ecologically and economically important wood-feeding social insects that are widespread in the Holarctic region. Despite their importance, no study has yet attempted to reconstruct a global time-scaled phylogeny of Reticulitermes termites. In this study, we sequenced mitochondrial (2096bp) and nuclear (829bp) loci from 61 Reticulitermes specimens, collected across the genus' entire range, and one specimen of Coptotermes formosanus, which served as an outgroup. Bayesian and Maximum likelihood analyses conducted on the mitochondrial and nuclear sequences support the existence of four main lineages that span four global geographical regions: North America (NA lineage), western Europe (WE lineage), a region including eastern Europe and western Asia (EA+WA lineage), and eastern Asia (EA lineage). The mitochondrial data allowed us to clarify the phylogenetic relationships among these lineages. They were also used to infer a chronogram that was time scaled based on age estimates for termite fossils (including the oldest Reticulitermes fossils, which date back to the late Eocene-early Oligocene). Our results support the hypothesis that the extant Reticulitermes lineage first differentiated in North America. The first divergence event in the ancestral lineage of Reticulitermes occurred in the early Miocene and separated the Nearctic lineages (i.e., the NA lineages) from the Palearctic lineages (i.e., WE, EE+WA, and EA lineages). Our analyses revealed that the main lineages of Reticulitermes diversified because of vicariance and migration events, which were probably induced by major paleogeographic and paleoclimatic changes that occurred during the Cenozoic era. This is the first global and comprehensive phylogenetic study of Reticulitermes termites, and it provides a crucial foundation for studying the evolution of phenotypic and life-history traits in Reticulitermes. For instance, the phylogeny we obtained suggested that 'asexual queen succession', a unique reproductive system, independently evolved at least three times during the diversification of the genus.


Assuntos
Isópteros/classificação , Animais , Evolução Biológica , Núcleo Celular , DNA Mitocondrial , Genes de Insetos , Especiação Genética , Isópteros/genética , Filogenia , Filogeografia
20.
Mol Pharmacol ; 87(2): 277-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473119

RESUMO

Re-epithelialization begins early during skin wound healing and is regulated by various growth factors and cytokines. Angiotensin II promotes the migration of keratinocytes and thereby contributes to wound healing. We investigated the mechanism by which angiotensin II stimulates human keratinocyte migration. Angiotensin II-induced keratinocyte migration was inhibited by an angiotensin II type 1 receptor (AT1R) antagonist (candesartan) or an angiotensin II type 2 receptor (AT2R) antagonist (PD123319) as well as by depletion of AT1R or AT2R. A biased agonist for AT1R, [Sar(1),Ile(4),Ile(8)]angiotensin II, induced cell migration, whereas depletion of ß-arrestin2 inhibited angiotensin II-induced migration. Angiotensin II-induced migration was blocked by neutralizing antibodies to transforming growth factor-ß (TGF-ß) as well as by the TGF-ß receptor inhibitor SB431542. The amount of TGF-ß1 was increased in the culture medium of angiotensin II-treated cells, and this effect was inhibited by candesartan or PD123319. Both angiotensin II- and TGF-ß-induced cell migration were inhibited by neutralizing antibodies to the epidermal growth factor (EGF) receptor but not by those to EGF receptor ligands. Angiotensin II-induced phosphorylation of the EGF receptor, and this effect was inhibited by candesartan, PD123319, SB431542, or depletion of ß-arrestin2, but not by neutralizing antibodies to heparin-binding EGF-like growth factor. Our results indicate that ß-arrestin-dependent signaling downstream of AT1R as well as AT2R signaling are necessary for angiotensin II-induced keratinocyte migration, and that such signaling promotes generation of the active form of TGF-ß, consequent activation of the TGF-ß receptor, and transactivation of the EGF receptor by the TGF-ß receptor.


Assuntos
Angiotensina II/farmacologia , Movimento Celular/fisiologia , Queratinócitos/fisiologia , Transdução de Sinais/fisiologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA