Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Connect Tissue Res ; 62(5): 542-553, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814448

RESUMO

Osteoarthritis is a common chronic disease of joints characterized by degenerative changes of articular cartilage. An early diagnosis of osteoarthritis may be possible when imaging excised tissue for research in situ at the cellular-molecular scale. Whereas cartilage histopathology is destructive, time-consuming, and limited to 2D views, contrast-enhanced x-ray microscopy (XRM) can image articular cartilage and subchondral bone in 3D. This study evaluates articular cartilage structure ex vivo using both techniques.Osteochondral plugs were excised from non-diseased bovine knees and stained in phosphotungstic acid for 0 to 32 h. XRM imaging revealed an optimal staining time of 16 h and a saturated staining time of 24 h. Histology sections were cut and analyzed by polarized light microscopy (PLM) and second-harmonic-generation dual-photon (SHG-DP) microscopy. Histology photomicrographs were aligned with matching XRM slices and evaluated for features relevant in histopathological scoring of osteoarthritis cartilage, including the tidemark, collagen architecture and chondrocyte morphology.The cartilage collagen network and chondrocytes from the 3D contrast-enhanced XRM were correlated with the 2D histology. This technique has two distinct advantages over routine histopathology: (1) the avoidance of dehydration, demineralization, and deformation of histological sectioning, thereby preserving the intact articular cartilage and subchondral bone plate ex vivo, and (2) the ability to evaluate the entire osteochondral volume in 3D. This work explores several diagnostic features of imaging cartilage, including: visualization of the tidemark in XRM and SHG-DP microscopy, validating the morphology of chondrocytes and nuclei with XRM, SHG-DP and PLM, and correlating collagen birefringence with XRM image intensity.


Assuntos
Cartilagem Articular , Animais , Cartilagem Articular/diagnóstico por imagem , Bovinos , Colágeno , Microscopia , Osteoartrite , Raios X
2.
Int J Mol Sci ; 18(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379175

RESUMO

Osteoarthritis (OA) is a degenerative disorder characterized by chondrocyte apoptosis and degeneration of articular cartilage resulting in loss of mobility and pain. Inflammation plays a key role in the development and progression of OA both on the side of apoptosis and repair, while its exact role in pathogenesis has yet to be fully elucidated. Few studies have examined the cellular composition (inflammatory cells and/or progenitor cells) in the synovium of patients with pre-OA (asymptomatic with cartilage damage). Therefore, in the current study, mesenchymal progenitor cells (MPCs) and macrophages were enumerated within normal, pre-OA and OA synovium. No differences were observed between MPCs in normal vs. pre-OA, however, fewer macrophages were observed in pre-OA vs. normal synovium. Osteoarthritic synovium contained greater numbers of both MPCs and macrophages. Interestingly, the localization of MPCs and macrophages was affected by disease severity. In normal and pre-OA synovium, MPCs and macrophages co-localized, while in OA synovium, MPCs and macrophage populations were spatially distinct. Examining the cellular interactions between MPCs and macrophages in synovium may be essential for understanding the role of these cells in the onset and/or pathogenesis of the disease. This study has provided a first step by examining these cell types both spatially and temporally (e.g., disease severity). Further cellular and molecular studies will be needed to determine the functions of these cells in the context of disease and in relation to each other and the joint as a whole.


Assuntos
Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Osteoartrite/patologia , Membrana Sinovial/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Contagem de Células , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo
3.
Connect Tissue Res ; 57(2): 113-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26631309

RESUMO

PURPOSE: The objectives of this study were to assess the cartilage boundary lubricating ability of (1) nonreduced (NR) disulfide-bonded proteoglycan 4 (PRG4) multimers versus PRG4 monomers and (2) NR versus reduced and alkylated (R/A) PRG4 monomers and to assess (3) the ability of NR PRG4 multimers versus monomers to adsorb to an articular cartilage surface. MATERIALS AND METHODS: PRG4 was separated into two preparations, PRG4 multimer enriched (PRG4Multi+) and PRG4 multimer deficient (PRG4Multi-), using size exclusion chromatography (SEC) and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cartilage boundary lubricating ability of PRG4Multi+ and PRG4Multi- was compared at a physiological concentration (450 µg/mL) and assessed over a range of concentrations (45, 150, and 450 µg/mL). R/A and NR PRG4Multi- were evaluated at 450 µg/mL. Immunohistochemistry with anti-PRG4 antibody 4D6 was performed to visualize the adsorption of PRG4 preparations to the surface of articular cartilage explants. RESULTS: Separation into enriched populations of PRG4Multi+ and PRG4Multi- was achieved using SEC and was confirmed by SDS-PAGE. PRG4Multi+ and PRG4Multi- both functioned as effective friction-reducing cartilage boundary lubricants at 450 µg/mL, with PRG4Multi+ being more effective than PRG4Multi-. PRG4Multi+ lubricated in a dose-dependent manner, however, PRG4Multi- did not. R/A PRG4Multi- lubricated similar to NR PRG4Multi-. PRG4-containing solutions showed 4D6 immunoreactivity at the articular surface; the immunoreactive intensity of PRG4Multi+ appeared to be similar to SF, whereas PRG4Multi- appeared to have less intensity. CONCLUSIONS: These results demonstrate that the intermolecular disulfide-bonded multimeric structure of PRG4 is important for its ability to adsorb to a cartilage surface and function as a boundary lubricant. These findings contribute to a greater understanding of the molecular basis of cartilage boundary lubrication of PRG4. Elucidating the PRG4 structure-lubrication function relationship will further contribute to the understanding of PRG4's role in diarthrodial joint homeostasis and disease.


Assuntos
Cartilagem Articular/metabolismo , Dissulfetos/metabolismo , Lubrificação , Multimerização Proteica , Proteoglicanas/química , Proteoglicanas/metabolismo , Adsorção , Animais , Bovinos , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Fricção , Imuno-Histoquímica , Cinética
4.
BMC Musculoskelet Disord ; 15: 41, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24529033

RESUMO

BACKGROUND: The aim of the current study was to evaluate the innervation of the acetabular labrum in the various zones and to understand its potential role in nociception and proprioception in hips with labral pathology. METHODS: A total of twenty hip labrums were tagged and excised intraoperatively from patients undergoing a total hip replacement. After preparation, the specimens were cut to a thickness of 10 µm and divided into four quadrants (zones) using a clock face pattern. Neurosensory structure distribution was then evaluated using Hematoxylin and Eosin (H and E), and immunoreactivity to S-100. RESULTS: All specimens had abundant free nerve endings (FNEs). These were seen predominantly superficially and on the chondral side of the labrum. In addition, predominantly three different types of nerve end organs (NEOs) were identified in all twenty specimens. FNEs and NEOs were more frequently seen in the antero-superior and postero-superior zones. Four specimens had abundant vascularity and disorganised architecture of FNEs in the deeper zones of the antero-superior quadrant suggestive of a healed tear. Myofibroblasts were present in abundance in all the labral specimens and were distributed uniformly throughout all labral zones and depth. CONCLUSIONS: The current study shows that the human acetabular labrum has abundant FNEs and NEOs. These are more abundant in the antero-superior and postero-superior zones. The labrum, by virtue of its neural innervation, can potentially mediate pain as well as proprioception of the hip joint, and be involved in neurosecretion that can influence connective tissue repair.


Assuntos
Acetábulo/inervação , Articulação do Quadril/inervação , Terminações Nervosas/patologia , Osteoartrite do Quadril/patologia , Acetábulo/cirurgia , Adulto , Idoso , Artroplastia de Quadril , Biomarcadores/análise , Articulação do Quadril/cirurgia , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Terminações Nervosas/química , Nociceptividade , Osteoartrite do Quadril/metabolismo , Osteoartrite do Quadril/cirurgia , Propriocepção , Proteínas S100/análise
5.
J Magn Reson Imaging ; 38(1): 231-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23125100

RESUMO

PURPOSE: To determine whether magnetic resonance imaging (MRI) could be used to track changes in skeletal morphology during bone healing using high-resolution micro-computed tomography (µCT) as a standard. We used a mouse model of bone injury to compare µCT with MRI. MATERIALS AND METHODS: Surgery was performed to induce a burr hole fracture in the mouse tibia. A selection of biomaterials was immediately implanted into the fractures. First we optimized the imaging sequences by testing different MRI pulse sequences. Then changes in bone morphology over the course of fracture repair were assessed using in vivo MRI and µCT. Histology was performed to validate the imaging outcomes. RESULTS: The rapid acquisition with relaxation enhancement (RARE) sequence provided sufficient contrast between bone and the surrounding tissues to clearly reveal the fracture. It allowed detection of the fracture clearly 1 and 14 days postsurgery and revealed soft tissue changes that were not clear on µCT. In MRI and µCT the fracture was seen at day 1 and partial healing was detected at day 14. CONCLUSION: The RARE sequence was the most suitable for MRI bone imaging. It enabled the detection of hard and even soft tissue changes. These findings suggest that MRI could be an effective imaging modality for assessing changes in bone morphology and pathobiology.


Assuntos
Consolidação da Fratura/fisiologia , Imageamento por Ressonância Magnética/métodos , Tíbia/patologia , Fraturas da Tíbia/diagnóstico , Fraturas da Tíbia/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Animais , Feminino , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tíbia/diagnóstico por imagem
6.
Cell Death Dis ; 13(5): 470, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585042

RESUMO

Aggrecan is a critical component of the extracellular matrix of all cartilages. One of the early hallmarks of osteoarthritis (OA) is the loss of aggrecan from articular cartilage followed by degeneration of the tissue. Mesenchymal progenitor cell (MPC) populations in joints, including those in the synovium, have been hypothesized to play a role in the maintenance and/or repair of cartilage, however, the mechanism by which this may occur is unknown. In the current study, we have uncovered that aggrecan is secreted by synovial MPCs from healthy joints yet accumulates inside synovial MPCs within OA joints. Using human synovial biopsies and a rat model of OA, we established that this observation in aggrecan metabolism also occurs in vivo. Moreover, the loss of the "anti-proteinase" molecule alpha-2 macroglobulin (A2M) inhibits aggrecan secretion in OA synovial MPCs, whereas overexpressing A2M rescues the normal secretion of aggrecan. Using mice models of OA and cartilage repair, we have demonstrated that intra-articular injection of aggrecan into OA joints inhibits cartilage degeneration and stimulates cartilage repair respectively. Furthermore, when synovial MPCs overexpressing aggrecan were transplanted into injured joints, increased cartilage regeneration was observed vs. wild-type MPCs or MPCs with diminished aggrecan expression. Overall, these results suggest that aggrecan secreted from joint-associated MPCs may play a role in tissue homeostasis and repair of synovial joints.


Assuntos
Cartilagem Articular , Osteoartrite , Agrecanas/genética , Agrecanas/metabolismo , Animais , Cartilagem Articular/patologia , Homeostase , Camundongos , Osteoartrite/patologia , Ratos , Membrana Sinovial/metabolismo
7.
Magn Reson Med ; 66(2): 520-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21674618

RESUMO

T2 was used in this study to assess tendon microstructure. Two unloaded digital extensor tendons were bent such that their long axes were imaged throughout 180° with respect to B0. T2-weighted images reveal periodic banding (∼200 µm) when tendons were oriented at ±55° with respect to B0. Five pairs of tendons were used to study the influence of load on T2W MRI: one tendon of each pair was loaded with a 7.8-N mass, and both tendons were fixed in formalin then imaged at 55° to B0. MRI banding was present in the unloaded, but not loaded, tendons. In unloaded tendons, polarized-light microscopy revealed collagen crimp with a periodicity similar to MRI. In loaded tendons, there was a strain-induced extinction of periodicity on both MRI and polarized-light microscopy. These studies confirm that crimp is detectable by high-field MRI and could serve as an in vivo index of physiological strains in collagenous tissues.


Assuntos
Algoritmos , Colágeno/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tendões/ultraestrutura , Animais , Cães , Aumento da Imagem/métodos , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Front Immunol ; 12: 626884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897685

RESUMO

Increased afferent input resulting from painful injury augments the activity of central nociceptive circuits via both neuron-neuron and neuron-glia interactions. Microglia, resident immune cells of the central nervous system (CNS), play a crucial role in the pathogenesis of chronic pain. This study provides a framework for understanding how peripheral joint injury signals the CNS to engage spinal microglial responses. During the first week of monosodium iodoacetate (MIA)-induced knee joint injury in male rats, inflammatory and neuropathic pain were characterized by increased firing of peripheral joint afferents. This increased peripheral afferent activity was accompanied by increased Iba1 immunoreactivity within the spinal dorsal horn indicating microglial activation. Pharmacological silencing of C and A afferents with co-injections of QX-314 and bupivacaine, capsaicin, or flagellin prevented the development of mechanical allodynia and spinal microglial activity after MIA injection. Elevated levels of ATP in the cerebrospinal fluid (CSF) and increased expression of the ATP transporter vesicular nucleotide transporter (VNUT) in the ipsilateral spinal dorsal horn were also observed after MIA injections. Selective silencing of primary joint afferents subsequently inhibited ATP release into the CSF. Furthermore, increased spinal microglial reactivity, and alleviation of MIA-induced arthralgia with co-administration of QX-314 with bupivacaine were recapitulated in female rats. Our results demonstrate that early peripheral joint injury activates joint nociceptors, which triggers a central spinal microglial response. Elevation of ATP in the CSF, and spinal expression of VNUT suggest ATP signaling may modulate communication between sensory neurons and spinal microglia at 2 weeks of joint degeneration.


Assuntos
Artrite Experimental/fisiopatologia , Microglia/fisiologia , Neurônios Aferentes/fisiologia , Medula Espinal/fisiopatologia , Trifosfato de Adenosina/fisiologia , Animais , Artralgia/terapia , Modelos Animais de Doenças , Feminino , Hiperalgesia/fisiopatologia , Ácido Iodoacético/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
9.
Pain ; 162(5): 1416-1425, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33230005

RESUMO

ABSTRACT: The development of new analgesic drugs has been hampered by the inability to translate preclinical findings to humans. This failure is due in part to the weak connection between commonly used pain outcome measures in rodents and the clinical symptoms of chronic pain. Most rodent studies rely on the use of experimenter-evoked measures of pain and assess behavior under ethologically unnatural conditions, which limits the translational potential of preclinical research. Here, we addressed this problem by conducting an unbiased, prospective study of behavioral changes in mice within a natural homecage environment using conventional preclinical pain assays. Unexpectedly, we observed that cage-lid hanging, a species-specific elective behavior, was the only homecage behavior reliably impacted by pain assays. Noxious stimuli reduced hanging behavior in an intensity-dependent manner, and the reduction in hanging could be restored by analgesics. Finally, we developed an automated approach to assess hanging behavior. Collectively, our results indicate that the depression of hanging behavior is a novel, ethologically valid, and translationally relevant pain outcome measure in mice that could facilitate the study of pain and analgesic development.


Assuntos
Comportamento Animal , Dor , Analgésicos/uso terapêutico , Animais , Camundongos , Dor/tratamento farmacológico , Medição da Dor , Estudos Prospectivos
10.
PLoS One ; 15(1): e0226735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917811

RESUMO

The major milestones in mouse placental development are well described, but our understanding is limited to how the placenta can adapt to damage or changes in the environment. By using stereology and expression of cell cycle markers, we found that the placenta grows under normal conditions not just by hyperplasia of trophoblast cells but also through extensive polyploidy and cell hypertrophy. In response to feeding a low protein diet to mothers prior to and during pregnancy, to mimic chronic malnutrition, we found that this normal program was altered and that it was influenced by the sex of the conceptus. Male fetuses showed intrauterine growth restriction (IUGR) by embryonic day (E) 18.5, just before term, whereas female fetuses showed IUGR as early as E16.5. This difference was correlated with differences in the size of the labyrinth layer of the placenta, the site of nutrient and gas exchange. Functional changes were implied based on up-regulation of nutrient transporter genes. The junctional zone was also affected, with a reduction in both glycogen trophoblast and spongiotrophoblast cells. These changes were associated with increased expression of Phlda2 and reduced expression of Egfr. Polyploidy, which results from endoreduplication, is a normal feature of trophoblast giant cells (TGC) but also spongiotrophoblast cells. Ploidy was increased in sinusoidal-TGCs and spongiotrophoblast cells, but not parietal-TGCs, in low protein placentas. These results indicate that the placenta undergoes a range of changes in development and function in response to poor maternal diet, many of which we interpret are aimed at mitigating the impacts on fetal and maternal health.


Assuntos
Aclimatação , Dieta com Restrição de Proteínas/efeitos adversos , Embrião de Mamíferos/citologia , Retardo do Crescimento Fetal/etiologia , Privação de Alimentos , Placenta/citologia , Animais , Proliferação de Células , Embrião de Mamíferos/fisiologia , Feminino , Desenvolvimento Fetal , Retardo do Crescimento Fetal/patologia , Células Gigantes , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , Placenta/fisiologia , Gravidez , Trofoblastos/citologia , Trofoblastos/fisiologia
11.
Sci Adv ; 4(8): eaas9846, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30101191

RESUMO

Chronic joint pain such as mechanical allodynia is the most debilitating symptom of arthritis, yet effective therapies are lacking. We identify the pannexin-1 (Panx1) channel as a therapeutic target for alleviating mechanical allodynia, a cardinal sign of arthritis. In rats, joint pain caused by intra-articular injection of monosodium iodoacetate (MIA) was associated with spinal adenosine 5'-triphosphate (ATP) release and a microglia-specific up-regulation of P2X7 receptors (P2X7Rs). Blockade of P2X7R or ablation of spinal microglia prevented and reversed mechanical allodynia. P2X7Rs drive Panx1 channel activation, and in rats with mechanical allodynia, Panx1 function was increased in spinal microglia. Specifically, microglial Panx1-mediated release of the proinflammatory cytokine interleukin-1ß (IL-1ß) induced mechanical allodynia in the MIA-injected hindlimb. Intrathecal administration of the Panx1-blocking peptide 10panx suppressed the aberrant discharge of spinal laminae I-II neurons evoked by innocuous mechanical hindpaw stimulation in arthritic rats. Furthermore, mice with a microglia-specific genetic deletion of Panx1 were protected from developing mechanical allodynia. Treatment with probenecid, a clinically used broad-spectrum Panx1 blocker, resulted in a striking attenuation of MIA-induced mechanical allodynia and normalized responses in the dynamic weight-bearing test, without affecting acute nociception. Probenecid reversal of mechanical allodynia was also observed in rats 13 weeks after anterior cruciate ligament transection, a model of posttraumatic osteoarthritis. Thus, Panx1-targeted therapy is a new mechanistic approach for alleviating joint pain.


Assuntos
Artralgia/prevenção & controle , Artrite Experimental/prevenção & controle , Conexinas/metabolismo , Conexinas/fisiologia , Hiperalgesia/prevenção & controle , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Doenças da Medula Espinal/prevenção & controle , Animais , Artralgia/etiologia , Artrite Experimental/etiologia , Conexinas/genética , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Doenças da Medula Espinal/etiologia
12.
Tissue Eng ; 13(4): 809-17, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17394387

RESUMO

Basic fibroblast growth factor (bFGF) is a potent mitogen that exhibits stimulatory effects on bone tissue regeneration. To gain further insight into the potential of bFGF for systemic therapy in osteoporosis, we investigated the responsiveness of bone marrow stromal cells (BMSCs) explanted from 7-month-old normal and ovariectomized (OVX) rats that were intravenously treated with a low dose of bFGF (25 microg/kg) for 2 weeks. The BMSCs were obtained using femoral aspiration and maintained in an osteogenic medium. The amount of cells recovered from bFGF-treated rats was lower than that from saline-treated rats, and proliferation of the cells was markedly less for the bFGF-treated rats. The BMSCs from the bFGF-treated rats also showed lower levels of specific alkaline phosphatase (ALP) activity (ALP/deoxyribonucleic acid) and mineralization. Expression of the extracellular matrix proteins critical for mineralization, in particular osteopontin, was greater for bFGF-treated cells from both types of animals in the first week of culture, after which the expression of all markers significantly declined. Dual energy x-ray absorptiometry analyses of the tibiae showed an increase in bone mineral density after bFGF treatment only for OVX rats. We conclude that osteoprogenitor cells were depleted from the marrow of bFGF-treated rats, most likely because of the stimulatory effect of bFGF on bone formation.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Ovariectomia , Animais , Células da Medula Óssea/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Valores de Referência , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/fisiologia , Engenharia Tecidual/métodos
13.
Ann Biomed Eng ; 44(4): 1128-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26194040

RESUMO

Proteoglycan 4 (PRG4) is a mucin-like glycoprotein present in synovial fluid and at the surface of articular cartilage. The objectives of this study were to (1) assess the articular cartilage surface adsorption and in vitro cartilage boundary lubricating ability of full-length recombinant human PRG4 (rhPRG4), and (2) cartilage boundary lubricating ability of purified rhPRG4, both alone and in combination with hyaluronan (HA). rhPRG4 adsorption onto articular cartilage explants was assessed by immunohistochemistry and dot blot. An in vitro cartilage-cartilage friction test was used to assess rhPRG4's cartilage boundary lubricating ability compared to bovine PRG4, and that of purified rhPRG4 both alone and in combination with HA. rhPRG4 was able to adsorb to the articular surface, as well as the cut surface, of cartilage explants. The kinetic coefficient of friction of rhPRG4 was similar to that of PRG4 (p = 0.16) and lower than phosphate-buffered saline (p < 0.05), while that of purified rhPRG4 + HA was significantly lower than rhPRG4 alone (p < 0.05). This study demonstrates that rhPRG4 can adsorb to an intact articular cartilage surface and functions as an effective boundary lubricant, both alone and with HA, and provides the foundation for in vivo evaluation of this clinically relevant full-length rhPRG4 for treatment of osteoarthritis.


Assuntos
Cartilagem Articular/química , Ácido Hialurônico/química , Proteoglicanas/química , Adsorção , Animais , Células CHO , Cartilagem Articular/metabolismo , Bovinos , Cricetulus , Humanos , Ácido Hialurônico/metabolismo , Proteoglicanas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Joelho de Quadrúpedes/química , Joelho de Quadrúpedes/metabolismo
14.
Tissue Eng Part A ; 21(9-10): 1720-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752490

RESUMO

Fracture nonunions represent one of many large bone defects where current treatment strategies fall short in restoring both form and function of the injured tissue. In this case, the use of a tissue-engineered scaffold for promoting bone healing offers an accessible and easy-to-manipulate environment for studying bone formation processes in vitro. We have previously shown that mechanical prestimulation using confined compression of differentiating osteoblasts results in an increase in mineralization formed in a 3D collagen-I scaffold. This study builds on this knowledge by evaluating the short and long-term effects of blocking gap junction-mediated intercellular communication among osteogenic cells on their effectiveness to mineralize collagen-I scaffolds in vitro, and in the presence and absence of mechanical stimulation. In this study, confined compression was applied in conjunction with octanol (a general communication blocker) or 18-α-glycerrhetinic acid (AGA, a specific gap junction blocker) using a modified FlexCell plate to collagen-I scaffolds seeded with murine embryonic stem cells stimulated toward osteoblast differentiation using beta-glycerol phosphate. The activity, presence, and expression of osteoblast cadherin, connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation. Fluorescence recovery after photobleaching, immunofluorescence, viability, histology assessments, and reverse-transcriptase polymerase chain reaction assessments revealed that inhibiting communication in this scaffold altered the lineage and function of differentiating osteoblasts. In particular, treatment with communication inhibitors caused reduced mineralization in the matrix, and dissociation between connexin-43 and integrin α5ß1. This dissociation was not restored even after long-term recovery. Thus, in order for this scaffold to be considered as an alternative strategy for the repair of large bone defects, cell-cell contacts and cell-matrix interactions must remain intact for osteoblast differentiation and function to be preserved. This study shows that within this 3D scaffold, gap junctions are essential in osteoblast response to mechanical loading, and are essential structures in producing a significant amount and organization of mineralization in the matrix.


Assuntos
Osso e Ossos/citologia , Calcificação Fisiológica/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Junções Comunicantes/metabolismo , Células-Tronco/citologia , Alicerces Teciduais/química , 1-Octanol/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Bovinos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Imunofluorescência , Junções Comunicantes/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Suporte de Carga
15.
J Appl Physiol (1985) ; 97(4): 1254-60, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15358750

RESUMO

As posttraumatic osteoarthritis (OA) progresses, the mechanical and morphometrical properties of the subchondral bone change and may be linked to damage of the articular cartilage. Potentially to slow that progression, doxycycline was administered orally twice daily (4 mg.kg(-1).day(-1)) in skeletally mature canines after anterior cruciate ligament transection (ACLX). To test if doxycycline significantly altered the structure and function of OA bone, we tested cancellous bone mechanical properties, measured bone mineral content, and analyzed bone structure by microcomputed tomography. Our investigation focused on subchondral trabecular bone changes in the medial femoral condyle at 36 and 72 wk after ACLX. Significant mechanical changes discovered at 36 wk post-ACLX were less obvious at 72 wk in both treated and ACLX groups. Doxycycline treatment conserved bone strain energy density at 72 wk. Doxycycline had little effect on the degradation of superficial osseous tissue at 36 wk post-ACLX; by 72 wk, doxycycline in an ACLX model limited subchondral bone loss within the first 3 mm of periarticular bone with established OA. Significant bone loss occurred in the deeper trabecular bone for all groups. Substantial architectural adaptation within deeper trabecular bone accompanied changes in mechanics in early and established OA.


Assuntos
Lesões do Ligamento Cruzado Anterior , Densidade Óssea , Doxiciclina/administração & dosagem , Fêmur/efeitos dos fármacos , Fêmur/fisiopatologia , Osteoartrite/tratamento farmacológico , Osteoartrite/fisiopatologia , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos/métodos , Força Compressiva , Modelos Animais de Doenças , Cães , Elasticidade , Feminino , Fêmur/diagnóstico por imagem , Masculino , Osteoartrite/diagnóstico por imagem , Osteoartrite/etiologia , Radiografia , Índice de Gravidade de Doença , Resultado do Tratamento
16.
J Control Release ; 98(2): 255-68, 2004 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-15262417

RESUMO

Although numerous growth factors can promote the regeneration of bone upon parenteral administration, all exhibit undesirable side-effects that prevent their clinical utility. These side-effects arise due to the growth factors' inherent lack of bone affinity. The goal of this study was to develop a means to enhance the bone mineral affinity of osteogenic growth factors so as to minimize their extra-skeletal distribution. Heparin, a glycosaminoglycan that exhibits a high affinity to numerous growth factors, was modified with bisphosphonates to enhance its affinity to bone mineral (i.e. hydroxyapatite, HA). To this end, conjugation of 1-amino-1,1-diphosphonate methane (aminoBP) onto periodate-oxidized heparin using 4-(maleimidomethyl)cyclohexane-1-carboxyl-hydrazide was attempted. Using this chemistry, the number of aminoBPs conjugated onto heparin was modulated by varying the reacting reagent concentrations (to a maximum of 7 aminoBPs per heparin). Increasing the number of aminoBPs resulted in a more than twofold increase in heparin's affinity for HA in vitro. Subsequently, the ability of aminoBP-heparin conjugates to enhance the mineral affinity of basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) was explored. The results revealed that the complexation between the conjugates and growth factors had occurred and that the conjugates increased the bone mineral affinity of bFGF and BMP-2 in an aminoBP-dependent manner. In conclusion, the conjugation of aminoBP onto heparin is a feasible approach to enhance the affinity of heparin-binding, osteogenic growth factors to HA.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Difosfonatos/química , Sistemas de Liberação de Medicamentos/métodos , Durapatita/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparina/análogos & derivados , Fator de Crescimento Transformador beta/metabolismo , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Durapatita/química , Fator 2 de Crescimento de Fibroblastos/química , Heparina/química , Heparina/farmacologia , Maleimidas/química , Ácido Periódico/química , Fosfatos/química , Ligação Proteica/efeitos dos fármacos , Fator de Crescimento Transformador beta/química
17.
J Pharm Pharm Sci ; 7(1): 27-37, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-15144732

RESUMO

PURPOSE: Weekly subcutaneous administration of 0 (vehicle), 10 and 80 microg/kg doses of human parathyroid hormone (1-34) [PTH (1-34)] were compared based on their capacity to induce systemic formation of bone in 9 month-old ovariectomized (OVX) Sprague-Dawley rats. METHODS: Changes elicited at bone tissue after 4 weeks of treatment were assessed using dual x-ray absorptiometry, micro-computed tomography (microCT), and ashing. RESULTS: The 10 microg/kg dose led to a significant increase (p<0.025) in femoral bone mineral density (BMD) over vehicle- and 80 microg/kg-treated groups. Similarly, structural analysis of the femoral neck trabecular bone by microCT revealed increases in bone volume fraction and trabecular thickness over the pre-treatment baseline, and vehicle- and 80 microg/kg-treated groups. CONCLUSIONS: The data suggest that the weekly administration of 10 microg/kg of PTH (1-34) was sufficient to significantly promote the bone mineral density systemically. The weekly administration of 10 microg/kg over a 4-week treatment period is, to our knowledge, one of the lowest reported total dose of PTH (1-34) shown to induce a net anabolic effect on skeletal tissue in OVX rats.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Índice de Massa Corporal , Feminino , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Sprague-Dawley/cirurgia , Tíbia/química , Tíbia/efeitos dos fármacos
18.
Tissue Eng Part A ; 20(23-24): 3142-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24851936

RESUMO

Developing a viable and functional bone scaffold in vitro that is capable of surviving and bearing mechanical load in vivo requires an understanding of the cell biology of osteoprogenitor cells, particularly how they are influenced by mechanical stimulation during cell differentiation and maturation. In this study, mechanical load was applied using a modified FlexCell plate to impart confined compression to collagen-I scaffolds seeded with undifferentiated murine embryonic stem cells. The activity, presence, and expression of osteoblast-cadherin (OB-Cad) and connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation as cells were stimulated to differentiate to osteoblasts with and without applied mechanical load. Fluorescence recovery after photobleaching, immunofluorescence, viability, von Kossa, and real-time polymerase chain reaction assessments revealed that mechanical prestimulation of this cell-seeded scaffold altered the expression of OB-Cad and connexin-43 and resulted in significant differences in the structure and organization of mineralization present in the collagen matrix. Specifically, cells in gels that were loaded for 40 h after 5 days of differentiation and then left to fully differentiate for 30 days produced a highly structured honeycomb-shaped mineralization in the matrix; an outcome that was previously shown to be indicative of late osteoblast/early osteocyte activity. This study highlights the potential of mechanical load to accelerate differentiation and enhance osteoblast communication and function during the differentiation process, and highlights a time point of cell differentiation within this scaffold to apply load in order to most effectively transduce a mechanical signal.


Assuntos
Colágeno Tipo I/química , Osteoblastos/citologia , Osteogênese/fisiologia , Alicerces Teciduais/química , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Conexina 43/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Camundongos , Osteoblastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
J Mech Behav Biomed Mater ; 25: 11-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23726921

RESUMO

Articular cartilage forms the articulating surface of long bones and facilitates energy dissipation upon loading as well as joint lubrication and wear resistance. In normal cartilage, boundary lubrication between thin films at the cartilage surface reduces friction in the absence of interstitial fluid pressurization and fluid film lubrication by synovial fluid. Inadequate boundary lubrication is associated with degenerative joint conditions such as osteoarthritis (OA), but relations between OA and surface friction, lubrication and wear in boundary lubrication are not well defined. The purpose of the present study was to measure microscale boundary mode friction of the articular cartilage surface in an in vivo experimental model to better understand changes in cartilage surface friction in early OA. Cartilage friction was measured on the articular surface by atomic force microscopy (AFM) under applied loads ranging from 0.5 to 5 µN. Microscale AFM friction analyses revealed depth dependent changes within the top-most few microns of the cartilage surface in this model of early OA. A significant increase of nearly 50% was observed in the mean engineering friction coefficient for OA cartilage at the 0.5 µN load level; no significant differences in friction coefficients were found under higher applied loads. Changes in cartilage surface morphology observed by scanning electron microscopy included cracking and roughening of the surface indicative of disruption and wear accompanied by an apparent disintegration of the thin surface lamina from the underlying matrix. Immunohistochemical staining of lubricin - an important cartilage surface boundary lubricant - did not reveal differences in spatial distribution near the cartilage surface in OA compared to controls. The increase in friction at the 0.5 µN force level is interpreted to reflect changes in the interfacial mechanics of the thin surface lamina of articular cartilage: increased friction implies reduced lubrication efficiency and a higher potential for cartilage surface wear in OA. The effects of mechanical or biochemical changes or loss of the thin surface lamina on the remaining tissue with respect to OA progression is unknown and requires further study, but preservation of the surface lamina seems an important early target for the maintenance of cartilage health and prevention of OA.


Assuntos
Cartilagem Articular/fisiopatologia , Cartilagem Articular/ultraestrutura , Microscopia de Força Atômica/métodos , Osteoartrite do Quadril/patologia , Osteoartrite do Quadril/fisiopatologia , Suporte de Carga , Animais , Cães , Fricção , Lubrificação , Técnicas de Cultura de Órgãos , Estresse Mecânico , Propriedades de Superfície
20.
Cell Transplant ; 22(8): 1453-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23127821

RESUMO

Embryonic stem (ES) cells are a uniquely self-renewing, pluripotent population of cells that must be differentiated before being useful for cell therapy. Since most studies utilize subcutaneous implantation to test the in vivo functionality of ES cell-derived cells, the objective of the current study was to develop an appropriate and clinically relevant in vivo implantation system in which the behavior and tumorigenicity of ES cell-derived cells could be effectively tested in a tissue-specific (orthotopic) site. Male ES cells were differentiated either into osteoblasts or chondrocytes using protocols that were previously developed and published by our laboratory. The differentiated cells were implanted into a burr-hole fracture created in the proximal tibiae of immunocompetent female mice, strain matched to the ES cell line. The ability of the differentiated ES cell-derived cells (bearing the Y chromosome) to incorporate into the newly formed bone was assessed by micro-computed tomography imaging and histochemistry. ES cells differentiated with either osteogenic or chondrogenic medium supplementation formed a soft tissue mass that disrupted the normal bone architecture by 4 weeks after implantation in some mice. In contrast, mice receiving osteoblastic cells that were differentiated in a three-dimensional type 1 collagen gel showed evidence of new bone formation at the defect site without evidence of tumor formation for up to 8 weeks after implantation. In this injury model, type 1 collagen is more effective than medium supplementation at driving more complete differentiation of ES cells, as evidenced by reducing their tumorigenicity. Overall, the current study emphasizes the importance of using an appropriate orthotopic implantation system to effectively test the behavior and tumorigenicity of the cells in vivo.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Imunocompetência , Neoplasias/patologia , Osteogênese , Transplante de Células-Tronco , Fraturas da Tíbia/terapia , Animais , Bovinos , Linhagem Celular , Cromossomos de Mamíferos/metabolismo , Modelos Animais de Doenças , Feminino , Hibridização In Situ , Masculino , Camundongos , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/patologia , Fraturas da Tíbia/cirurgia , Microtomografia por Raio-X , Cromossomo Y/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA