Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(6): 1372-1376, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946777

RESUMO

Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Camundongos
2.
J Neurosci ; 42(15): 3122-3132, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35232760

RESUMO

During visually guided behaviors, mere hundreds of milliseconds can elapse between a sensory input and its associated behavioral response. How spikes occurring at different times are integrated to drive perception and action remains poorly understood. We delivered random trains of optogenetic stimulation (white noise) to excite inhibitory interneurons in V1 of mice of both sexes while they performed a visual detection task. We then performed a reverse correlation analysis on the optogenetic stimuli to generate a neuronal-behavioral kernel, an unbiased, temporally precise estimate of how suppression of V1 spiking at different moments around the onset of a visual stimulus affects detection of that stimulus. Electrophysiological recordings enabled us to capture the effects of optogenetic stimuli on V1 responsivity and revealed that the earliest stimulus-evoked spikes are preferentially weighted for guiding behavior. These data demonstrate that white noise optogenetic stimulation is a powerful tool for understanding how patterns of spiking in neuronal populations are decoded in generating perception and action.SIGNIFICANCE STATEMENT During visually guided actions, continuous chains of neurons connect our retinas to our motoneurons. To unravel circuit contributions to behavior, it is crucial to establish the relative functional position(s) that different neural structures occupy in processing and relaying the signals that support rapid, precise responses. To address this question, we randomly inhibited activity in mouse V1 throughout the stimulus-response cycle while the animals did many repetitions of a visual task. The period that led to impaired performance corresponded to the earliest stimulus-driven response in V1, with no effect of inhibition immediately before or during late stages of the stimulus-driven response. This approach offers experimenters a powerful method for uncovering the temporal weighting of spikes from stimulus to response.


Assuntos
Optogenética , Córtex Visual , Animais , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Percepção Visual/fisiologia
3.
J Vis ; 23(5): 18, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37223942

RESUMO

Understanding the circuits that access and read out information in the cerebral cortex to guide behavior remains a challenge for systems-level neuroscience. Recent optogenetic experiments targeting specific cell classes in mouse primary visual cortex (V1) have shown that mice are sensitive to optically-induced increases in V1 spiking but are relatively insensitive to decreases in neuronal spiking of similar magnitude and time course. This asymmetry suggests that the readout of signals from cortex depends preferentially on increases in spike rate. We investigated whether humans display a similar asymmetry by measuring thresholds for detecting changes in the motion coherence of dynamic random dot stimuli. The middle temporal visual area (MT) has been shown to play an important role in discriminating random dot stimuli, and the responses of its individual neurons to dynamic random dots are well characterized. Although both increments and decrements in motion coherence have heterogeneous effects on MT responses, increments cause on average more increases in firing rates. Consistent with this, we found that subjects are more sensitive to increments of random dot motion coherence than to decrements of coherence. The magnitude of the difference in detectability was consistent with the expected difference in neuronal signal-to-noise associated with MT spike rate increases driven by coherence increments and decrements. The results add strength to the notion that the circuit mechanisms that read out cortical signals are relatively insensitive to decrements in cortical spiking.


Assuntos
Córtex Cerebral , Neurônios , Humanos , Animais , Camundongos , Movimento (Física)
4.
Proc Natl Acad Sci U S A ; 116(52): 26187-26194, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31871179

RESUMO

Attention is a common but highly complex term associated with a large number of distinct behavioral and perceptual phenomena. In the brain, attention-related changes in neuronal activity are observed in widespread structures. The many distinct behavioral and neuronal phenomena related to attention suggest that it might be subdivided into components corresponding to distinct biological mechanisms. Recent neurophysiological studies in monkeys have isolated behavioral changes related to attention along the 2 indices of signal detection theory and found that these 2 behavioral changes are associated with distinct neuronal changes in different brain areas. These results support the view that attention is made up of distinct neurobiological mechanisms.

5.
J Neurosci ; 40(19): 3751-3767, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32273483

RESUMO

Behavior can be guided by neuronal activity in visual, auditory, or somatosensory cerebral cortex, depending on task requirements. In contrast to this flexible access of cortical signals, several observations suggest that behaviors depend more on neurons in later areas of visual cortex than those in earlier areas, although neurons in earlier areas would provide more reliable signals for many tasks. We recorded from neurons in different levels of visual cortex of 2 male rhesus monkeys while the animals did a visual discrimination task and examined trial-to-trial correlations between neuronal and behavioral responses. These correlations became stronger in primary visual cortex as neuronal signals in that area became more reliable relative to the other areas. The results suggest that the mechanisms that read signals from cortex might access any cortical area depending on the relative value of those signals for the task at hand.SIGNIFICANCE STATEMENT Information is encoded by the action potentials of neurons in various cortical areas in a hierarchical manner such that increasingly complex stimulus features are encoded in successive stages. The brain must extract information from the response of appropriate neurons to drive optimal behavior. A widely held view of this decoding process is that the brain relies on the output of later cortical areas to make decisions, although neurons in earlier areas can provide more reliable signals. We examined correlations between perceptual decisions and the responses of neurons in different levels of monkey visual cortex. The results suggest that the brain may access signals in any cortical area depending on the relative value of those signals for the task at hand.


Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Macaca mulatta , Masculino
6.
J Neurosci ; 40(41): 7902-7920, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32917791

RESUMO

Whenever the retinal image changes, some neurons in visual cortex increase their rate of firing whereas others decrease their rate of firing. Linking specific sets of neuronal responses with perception and behavior is essential for understanding mechanisms of neural circuit computation. We trained mice of both sexes to perform visual detection tasks and used optogenetic perturbations to increase or decrease neuronal spiking primary visual cortex (V1). Perceptual reports were always enhanced by increments in V1 spike counts and impaired by decrements, even when increments and decrements in spiking were generated in the same neuronal populations. Moreover, detecting changes in cortical activity depended on spike count integration rather than instantaneous changes in spiking. Recurrent neural networks trained in the task similarly relied on increments in neuronal activity when activity has costs. This work clarifies neuronal decoding strategies used by cerebral cortex to translate cortical spiking into percepts that can be used to guide behavior.SIGNIFICANCE STATEMENT Visual responses in the primary visual cortex (V1) are diverse, in that neurons can be either excited or inhibited by the onset of a visual stimulus. We selectively potentiated or suppressed V1 spiking in mice while they performed contrast change detection tasks. In other experiments, excitation or inhibition was delivered to V1 independent of visual stimuli. Mice readily detected increases in V1 spiking while equivalent reductions in V1 spiking suppressed the probability of detection, even when increases and decreases in V1 spiking were generated in the same neuronal populations. Our data raise the striking possibility that only increments in spiking are used to render information to structures downstream of V1.


Assuntos
Estimulação Luminosa , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Algoritmos , Animais , Simulação por Computador , Sensibilidades de Contraste , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Redes Neurais de Computação , Neurônios/fisiologia , Optogenética
7.
J Neurosci ; 39(28): 5493-5505, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31068439

RESUMO

Although spatial and feature attention have differing effects on neuronal responses in visual cortex, it remains unclear why. Response normalization has been implicated in both types of attention (Carandini and Heeger, 2011), and single-unit studies have demonstrated that the magnitude of spatial attention effects on neuronal responses covaries with the magnitude of normalization effects. However, the relationship between feature attention and normalization remains largely unexplored. We recorded from individual neurons in the middle temporal area of rhesus monkeys using a task that allowed us to isolate the effects of feature attention, spatial attention, and normalization on the responses of each neuron. We found that the magnitudes of neuronal response modulations due to spatial attention and feature attention are correlated; however, whereas modulations due to spatial attention are correlated with normalization strength, those due to feature attention are not. Additionally, spatial attention modulations are stronger with multiple stimuli in the receptive field, whereas feature attention modulations are not. These findings are captured by a model in which spatial and feature attention share common top-down attention signals that nonetheless result in differing sensory neuron response modulations because of a spatially tuned sensory normalization mechanism. This model explains previously reported commonalities and differences between these two types of attention by clarifying the relationship between top-down attention signals and sensory normalization. We conclude that similar top-down signals to visual cortex can have distinct effects on neuronal responses due to distinct interactions with sensory mechanisms.SIGNIFICANCE STATEMENT Subjects use attention to improve their visual perception in several ways, including by attending to a location in space or to a visual feature. Prior studies have found both commonalities and differences between the effects of spatial and feature attention on neuronal responses in visual cortex, although it is unclear what mechanisms could explain this range of effects. Normalization, a computation by which neuronal responses are modified by stimulus context, has been implicated in many neuronal mechanisms throughout the brain. Here we propose that normalization provides a simple explanation for how spatial and feature attention could share common top-down attention signals that still affect sensory neuron responses differently.


Assuntos
Atenção , Percepção Espacial , Córtex Visual/fisiologia , Percepção Visual , Animais , Macaca mulatta , Masculino , Células Receptoras Sensoriais/fisiologia , Processamento Espacial , Córtex Visual/citologia
8.
J Neurosci ; 36(19): 5353-61, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170131

RESUMO

UNLABELLED: Studies of visual attention in monkeys typically measure neuronal activity when the stimulus event to be detected occurs at a cued location versus when it occurs at an uncued location. But this approach does not address how neuronal activity changes relative to conditions where attention is unconstrained by cueing. Human psychophysical studies have used neutral cueing conditions and found that neutrally cued behavioral performance is generally intermediate to that of cued and uncued conditions (Posner et al., 1978; Mangun and Hillyard, 1990; Montagna et al., 2009). To determine whether the neuronal correlates of visual attention during neutral cueing are similarly intermediate, we trained macaque monkeys to detect changes in stimulus orientation that were more likely to occur at one location (cued) than another (uncued), or were equally likely to occur at either stimulus location (neutral). Consistent with human studies, performance was best when the location was cued, intermediate when both locations were neutrally cued, and worst when the location was uncued. Neuronal modulations in visual area V4 were also graded as a function of cue validity and behavioral performance. By recording from both hemispheres simultaneously, we investigated the possibility of switching attention between stimulus locations during neutral cueing. The results failed to support a unitary "spotlight" of attention. Overall, our findings indicate that attention-related changes in V4 are graded to accommodate task demands. SIGNIFICANCE STATEMENT: Studies of the neuronal correlates of attention in monkeys typically use visual cues to manipulate where attention is focused ("cued" vs "uncued"). Human psychophysical studies often also include neutrally cued trials to study how attention naturally varies between points of interest. But the neuronal correlates of this neutral condition are unclear. We measured behavioral performance and neuronal activity in cued, uncued, and neutrally cued blocks of trials. Behavioral performance and neuronal responses during neutral cueing were intermediate to those of the cued and uncued conditions. We found no signatures of a single mechanism of attention that switches between stimulus locations. Thus, attention-related changes in neuronal activity are largely hemisphere-specific and graded according to task demands.


Assuntos
Atenção , Processamento Espacial , Córtex Visual/fisiologia , Percepção Visual , Animais , Sinais (Psicologia) , Macaca mulatta , Masculino , Neurônios/fisiologia , Percepção Espacial , Córtex Visual/citologia
9.
J Neurophysiol ; 118(3): 1903-1913, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701536

RESUMO

Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism.NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical area can be largely explained by between-neuron differences in normalization strength. Here we demonstrate that attention modulation size varies within neurons as well and that this variance is largely explained by within-neuron differences in normalization strength. We provide a new spatially tuned normalization model that explains this broad range of observed normalization and attention effects.


Assuntos
Atenção , Neurônios/fisiologia , Processamento Espacial , Animais , Sinais (Psicologia) , Macaca mulatta , Masculino , Modelos Neurológicos , Lobo Temporal/citologia , Lobo Temporal/fisiologia
10.
Proc Natl Acad Sci U S A ; 111(1): E178-87, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367105

RESUMO

Neurons are sensitive to the relative timing of inputs, both because several inputs must coincide to reach spike threshold and because active dendritic mechanisms can amplify synchronous inputs. To determine if input synchrony can influence behavior, we trained mice to report activation of excitatory neurons in visual cortex using channelrhodopsin-2. We used light pulses that varied in duration from a few milliseconds to 100 ms and measured neuronal responses and animals' detection ability. We found detection performance was well predicted by the total amount of light delivered. Short pulses provided no behavioral advantage, even when they concentrated evoked spikes into an interval a few milliseconds long. Arranging pulses into trains of varying frequency from beta to gamma also produced no behavioral advantage. Light intensities required to drive behavior were low (at low intensities, channelrhodopsin-2 conductance varies linearly with intensity), and the accompanying changes in firing rate were small (over 100 ms, average change: 1.1 spikes per s). Firing rate changes varied linearly with pulse intensity and duration, and behavior was predicted by total spike count independent of temporal arrangement. Thus, animals' detection performance reflected the linear integration of total input over 100 ms. This behavioral linearity despite neurons' nonlinearities can be explained by a population code using noisy neurons. Ongoing background activity creates probabilistic spiking, allowing weak inputs to change spike probability linearly, with little amplification of coincident input. Summing across a population then yields a total spike count that weights inputs equally, regardless of their arrival time.


Assuntos
Córtex Cerebral/fisiologia , Regulação da Expressão Gênica , Neurônios/fisiologia , Animais , Comportamento Animal , Mapeamento Encefálico , Channelrhodopsins , Dendritos/fisiologia , Luz , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Distribuição Normal , Probabilidade , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Córtex Visual/fisiologia
11.
PLoS Biol ; 11(2): e1001477, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23393427

RESUMO

Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30-80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory-inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation-inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control.


Assuntos
Encéfalo/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Atenção/fisiologia , Haplorrinos , Modelos Neurológicos , Córtex Visual/fisiologia
12.
J Neurosci ; 33(50): 19416-22, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336708

RESUMO

In mammals, the lateral geniculate nucleus (LGN) and the superior colliculus (SC) are the major targets of visual inputs from the retina. The LGN projects mainly to primary visual cortex (V1) while the SC targets the thalamus and brainstem, providing two potential pathways for processing visual inputs. Indeed, cortical lesion experiments in rodents have yielded mixed results, leading to the hypothesis that performance of simple visual behaviors may involve computations performed entirely by this subcortical pathway through the SC. However, these previous experiments have been limited by both their assays of behavioral performance and their use of lesions to change cortical activity. To determine the contribution of V1 to these tasks, we trained mice to perform threshold detection tasks in which they reported changes in either the contrast or orientation of visual stimuli. We then reversibly inhibited V1 by optogenetically activating parvalbumin-expressing inhibitory neurons with channelrhodopsin-2. We found that suppressing activity in V1 substantially impaired performance in visual detection tasks. The behavioral deficit depended on the retinotopic position of the visual stimulus, confirming that the effect was due to the specific suppression of the visually driven V1 neurons. Behavioral effects were seen with only moderate changes in neuronal activity, as inactivation that raised neuronal contrast thresholds by a median of only 14% was associated with a doubling of behavioral contrast detection threshold. Thus, detection of changes in either orientation or contrast is dependent on, and highly sensitive to, the activity of neurons in V1.


Assuntos
Sensibilidades de Contraste/fisiologia , Orientação/fisiologia , Córtex Visual/fisiologia , Animais , Aprendizagem por Discriminação/fisiologia , Corpos Geniculados/fisiologia , Camundongos , Neurônios/fisiologia , Estimulação Luminosa , Vias Visuais/fisiologia
13.
PLoS Biol ; 9(4): e1000610, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21532743

RESUMO

During cognitive tasks electrical activity in the brain shows changes in power in specific frequency ranges, such as the alpha (8-12 Hz) or gamma (30-80 Hz) bands, as well as in a broad range above ∼80 Hz, called the high-gamma band. The role or significance of this broadband high-gamma activity is unclear. One hypothesis states that high-gamma oscillations serve just like gamma oscillations, operating at a higher frequency and consequently at a faster timescale. Another hypothesis states that high-gamma power is related to spiking activity. Because gamma power and spiking activity tend to co-vary during most stimulus manipulations (such as contrast modulations) or cognitive tasks (such as attentional modulation), it is difficult to dissociate these two hypotheses. We studied the relationship between high-gamma power, gamma rhythm, and spiking activity in the primary visual cortex (V1) of awake monkeys while varying the stimulus size, which increased the gamma power but decreased the firing rate, permitting a dissociation. We found that gamma power became anti-correlated with the high-gamma power, suggesting that the two phenomena are distinct and have different origins. On the other hand, high-gamma power remained tightly correlated with spiking activity under a wide range of stimulus manipulations. We studied this relationship using a signal processing technique called Matching Pursuit and found that action potentials are associated with sharp transients in the LFP with broadband power, which is visible at frequencies as low as ∼50 Hz. These results distinguish broadband high-gamma activity from gamma rhythms as an easily obtained and reliable electrophysiological index of neuronal firing near the microelectrode. Further, they highlight the importance of making a careful dissociation between gamma rhythms and spike-related transients that could be incorrectly decomposed as rhythms using traditional signal processing methods.


Assuntos
Ondas Encefálicas/fisiologia , Macaca mulatta/fisiologia , Córtex Visual/fisiologia , Animais , Comportamento Animal , Cognição/fisiologia , Eletroencefalografia/métodos , Medições dos Movimentos Oculares , Masculino , Neurônios/fisiologia , Testes Neuropsicológicos , Periodicidade , Tempo de Reação/fisiologia
14.
Neuron ; 112(13): 2231-2240.e5, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701788

RESUMO

Selectively focusing on a behaviorally relevant stimulus while ignoring irrelevant stimuli improves perception. Enhanced neuronal response gain is thought to support attention-related improvements in detection and discrimination. However, understanding of the neuronal pathways regulating perceptual sensitivity remains limited. Here, we report that responses of norepinephrine (NE) neurons in the locus coeruleus (LC) of non-human primates to behaviorally relevant sensory stimuli promote visual discrimination in a spatially selective way. LC-NE neurons spike in response to a visual stimulus appearing in the contralateral hemifield only when that stimulus is attended. This spiking is associated with enhanced behavioral sensitivity, is independent of motor control, and is absent on error trials. Furthermore, optogenetically activating LC-NE neurons selectively improves monkeys' contralateral stimulus detection without affecting motor criteria, supporting NE's causal role in granular cognitive control of selective attention at a cellular level, beyond its known diffuse and non-selective functions.


Assuntos
Atenção , Locus Cerúleo , Macaca mulatta , Norepinefrina , Percepção Visual , Locus Cerúleo/fisiologia , Animais , Atenção/fisiologia , Norepinefrina/metabolismo , Percepção Visual/fisiologia , Masculino , Estimulação Luminosa/métodos , Optogenética , Neurônios/fisiologia , Neurônios/metabolismo , Percepção Espacial/fisiologia
15.
Curr Biol ; 34(9): 1940-1952.e5, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38640924

RESUMO

The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with the V1 supporting the perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports the perception of many of the same visual features traditionally associated with the V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to the detection of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near their perceptual threshold while white noise patterns of optogenetic stimulation were delivered to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in the SC are critical for the detection of both luminance and contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK but no sign of a comparable modulation for luminance detection. The data suggest that behavioral detection of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both the SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually guided behaviors.


Assuntos
Optogenética , Estimulação Luminosa , Colículos Superiores , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Colículos Superiores/fisiologia , Córtex Visual Primário/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Córtex Visual/fisiologia , Feminino , Sensibilidades de Contraste/fisiologia
16.
J Neurosci ; 32(45): 15922-33, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136430

RESUMO

An important question in neuroscience is how the activity from spatially distributed cortical representations is integrated and processed together. In this study, we used a new approach to investigate the integration of distributed cortical activity. We used microstimulation to directly activate pairs of sites in primary visual cortex of rhesus monkeys. The sites were activated either singly or jointly, and the monkeys were trained to behaviorally report detection of the activation of either cortical site. We compared the detection performance with predictions from two different mathematical models of signal combination. Our data show that, at cortical separations <1 mm, signal integration is well described as a linear combination (d' summation) of individual site activity. At larger separations, signal integration is better described as a maximum operation on the site signals. We compare our neurophysiological findings to existing psychophysical data and suggest the intriguing possibility that cortical activity originating at spatial separations greater than ∼1 mm is processed as if by parallel, independent circuits whose signals can be compared against each other but not summed. This in turn implies that there is a strong constraint to the kinds of computations the brain can perform with spatially distributed cortical activity.


Assuntos
Detecção de Sinal Psicológico/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico , Estimulação Elétrica , Eletroencefalografia , Macaca mulatta , Masculino , Modelos Neurológicos , Tempo de Reação/fisiologia
17.
Curr Biol ; 33(17): R916-R918, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699352

RESUMO

A novel approach to studying attention in mice reveals processes similar to those in humans and lays out an efficient way to explore its neuronal correlates in a genetically tractable animal model.


Assuntos
Atenção , Modelos Animais , Animais , Humanos , Camundongos
18.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131716

RESUMO

When multiple stimuli appear together in the receptive field of a visual cortical neuron, the response is typically close to the average of that neuron's response to each individual stimulus. The departure from a linear sum of each individual response is referred to as normalization. In mammals, normalization has been best characterized in the visual cortex of macaques and cats. Here we study visually evoked normalization in the visual cortex of awake mice using optical imaging of calcium indicators in large populations of layer 2/3 (L2/3) V1 excitatory neurons and electrophysiological recordings across layers in V1. Regardless of recording method, mouse visual cortical neurons exhibit normalization to varying degrees. The distributions of normalization strength are similar to those described in cats and macaques, albeit slightly weaker on average.

19.
PLoS One ; 18(12): e0295140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38109430

RESUMO

When multiple stimuli appear together in the receptive field of a visual cortical neuron, the response is typically close to the average of that neuron's response to each individual stimulus. The departure from a linear sum of each individual response is referred to as normalization. In mammals, normalization has been best characterized in the visual cortex of macaques and cats. Here we study visually evoked normalization in the visual cortex of awake mice using imaging of calcium indicators in large populations of layer 2/3 (L2/3) V1 excitatory neurons and electrophysiological recordings across layers in V1. Regardless of recording method, mouse visual cortical neurons exhibit normalization to varying degrees. The distributions of normalization strength are similar to those described in cats and macaques, albeit slightly weaker on average.


Assuntos
Córtex Visual Primário , Córtex Visual , Gatos , Animais , Camundongos , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Neurônios/fisiologia , Macaca , Mamíferos
20.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662213

RESUMO

The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with V1 supporting perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports perception of many of the same visual features traditionally associated with V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to perception of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near perceptual threshold while we presented white noise patterns of optogenetic stimulation to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in SC are critical for detection of both luminance or contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK, but no sign of a comparable modulation for luminance detection. The data suggest that perception of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually-guided behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA