Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27641502

RESUMO

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Potássio/metabolismo , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases/genética , Permeabilidade , Fatores de Transcrição/genética
2.
Plant J ; 117(1): 264-279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844131

RESUMO

Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lpr ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lpr . Using recombinant lines from a biparental cross (Cvi-0 x Col-0), we show that the gene encoding class 2 Sucrose-Non-Fermenting Protein kinase 2.4 (SnRK2.4) in Col-0 contributes to >30% of Lpr by enhancing aquaporin-dependent water transport. At variance with the inactive and possibly unstable Cvi-0 SnRK2.4 form, the Col-0 form interacts with and phosphorylates the prototypal PIP2;1 aquaporin at Ser121 and stimulates its water transport activity upon coexpression in Xenopus oocytes and yeast cells. Activation of PIP2;1 by Col-0 SnRK2.4 in yeast also requires its protein kinase activity and can be counteracted by clade A Protein Phosphatases 2C. SnRK2.4 shows all hallmarks to be part of core abscisic acid (ABA) signaling modules. Yet, long-term (>3 h) inhibition of Lpr by ABA possibly involves a SnRK2.4-independent inhibition of PIP2;1. SnRK2.4 also promotes stomatal aperture and ABA-induced inhibition of primary root growth. The study identifies a key component of Lpr and sheds new light on the functional overlap and specificity of SnRK2.4 with respect to other ABA-dependent or independent SnRK2s.


Assuntos
Aquaporinas , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fosforilação , Aquaporinas/genética , Aquaporinas/metabolismo , Água/metabolismo
3.
Plant Physiol ; 194(4): 2564-2579, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38217868

RESUMO

The water uptake capacity of a root system is determined by its architecture and hydraulic properties, which together shape the root hydraulic architecture. Here, we investigated root responses to water deficit (WD) in seedlings of a maize (Zea mays) hybrid line (B73H) grown in hydroponic conditions, taking into account the primary root (PR), the seminal roots (SR), and their respective lateral roots. WD was induced by various polyethylene glycol concentrations and resulted in dose-dependent inhibitions of axial and lateral root growth, lateral root formation, and hydraulic conductivity (Lpr), with slightly distinct sensitivities to WD between PR and SR. Inhibition of Lpr by WD showed a half-time of 5 to 6 min and was fully (SR) or partially (PR) reversible within 40 min. In the two root types, WD resulted in reduced aquaporin expression and activity, as monitored by mRNA abundance of 13 plasma membrane intrinsic protein (ZmPIP) isoforms and inhibition of Lpr by sodium azide, respectively. An enhanced suberization/lignification of the epi- and exodermis was observed under WD in axial roots and in lateral roots of the PR but not in those of SR. Inverse modeling revealed a steep increase in axial conductance in root tips of PR and SR grown under WD that may be due to the decreased growth rate of axial roots in these conditions. Overall, our work reveals that these root types show quantitative differences in their anatomical, architectural, and hydraulic responses to WD, in terms of sensitivity, amplitude and reversibility. This distinct functionalization may contribute to integrative acclimation responses of whole root systems to soil WD.


Assuntos
Água , Zea mays , Água/metabolismo , Zea mays/metabolismo , Raízes de Plantas/metabolismo , Plântula/genética , Meristema/metabolismo
4.
Plant Physiol ; 192(3): 2404-2418, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37052178

RESUMO

Plant water uptake is determined by the root system architecture and its hydraulic capacity, which together define the root hydraulic architecture. The current research aims at understanding the water uptake capacities of maize (Zea mays), a model organism and major crop. We explored the genetic variations within a collection of 224 maize inbred Dent lines and successively defined core genotype subsets to access multiple architectural, anatomical, and hydraulic parameters in the primary root (PR) and seminal roots (SR) of hydroponically grown seedlings. We found 9-, 3.5-, and 12.4-fold genotypic differences for root hydraulics (Lpr), PR size, and lateral root size, respectively, that shaped wide and independent variations of root structure and function. Within genotypes, PR and SR showed similarities in hydraulics and, to a lesser extent, in anatomy. They had comparable aquaporin activity profiles that, however, could not be explained by aquaporin expression levels. Genotypic variations in the size and number of late meta xylem vessels were positively correlated with Lpr. Inverse modeling further revealed dramatic genotypic differences in the xylem conductance profile. Thus, tremendous natural variation of maize root hydraulic architecture underlies a high diversity of water uptake strategies and paves the way to quantitative genetic dissection of its elementary traits.


Assuntos
Aquaporinas , Água , Zea mays , Aquaporinas/genética , Aquaporinas/metabolismo , Fenótipo , Raízes de Plantas/metabolismo , Água/metabolismo , Zea mays/metabolismo
5.
Plant Physiol ; 190(2): 1289-1306, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35708646

RESUMO

Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen-Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions.


Assuntos
Aquaporinas , Arabidopsis , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Água/metabolismo , Xilema/metabolismo
6.
J Exp Bot ; 74(5): 1594-1608, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36515073

RESUMO

Root water uptake is driven by a combination of hydrostatic and osmotic forces. Water transport was characterized in primary roots of maize seedlings grown hydroponically under standard and water deficit (WD) conditions, as induced by addition of 150 g l-1 polyethylene glycol 8000 (water potential= -0.336 MPa). Flow measurements were performed using the pressure chamber technique in intact roots or on progressively cut root system architectures. To account for the concomitant transport of water and solutes in roots under WD, we developed within realistic root system architectures a hydraulic tree model integrating both solute pumping and leak. This model explains the high spontaneous sap exudation of roots grown in standard conditions, the non-linearity of pressure-flow relationships, and negative fluxes observed under WD conditions at low external hydrostatic pressure. The model also reveals the heterogeneity of driving forces and elementary radial flows throughout the root system architecture, and how this heterogeneity depends on both plant treatment and water transport mode. The full set of flow measurement data obtained from individual roots grown under standard or WD conditions was used in an inverse modeling approach to determine their respective radial and axial hydraulic conductivities. This approach allows resolution of the dramatic effects of WD on these two components.


Assuntos
Raízes de Plantas , Água , Transporte Biológico , Plântula , Pressão Hidrostática
7.
J Exp Bot ; 74(18): 5917-5930, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603421

RESUMO

In a context of climate change, deciphering signaling pathways driving plant adaptation to drought, changes in water availability, and salt is key. A crossing point of these plant stresses is their impact on plant water potential (Ψ), a composite physico-chemical variable reflecting the availability of water for biological processes such as plant growth and stomatal aperture. The Ψ of plant cells is mainly driven by their turgor and osmotic pressures. Here we investigated the effect of a variety of osmotic treatments on the roots of Arabidopsis plants grown in hydroponics. We used, among others, a permeating solute as a way to differentiate variations on turgor from variations in osmotic pressure. Measurement of cortical cell turgor pressure with a cell pressure probe allowed us to monitor the intensity of the treatments and thereby preserve the cortex from plasmolysis. Transcriptome analyses at an early time point (15 min) showed specific and quantitative transcriptomic responses to both osmotic and turgor pressure variations. Our results highlight how water-related biophysical parameters can shape the transcriptome of roots under stress and provide putative candidates to explore further the early perception of water stress in plants.

8.
Physiol Rev ; 95(4): 1321-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26336033

RESUMO

Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations, transport selectivity, and regulation properties. Plant aquaporins are localized in the plasma membrane, endoplasmic reticulum, vacuoles, plastids and, in some species, in membrane compartments interacting with symbiotic organisms. Plant aquaporins can transport various physiological substrates in addition to water. Of particular relevance for plants is the transport of dissolved gases such as carbon dioxide and ammonia or metalloids such as boron and silicon. Structure-function studies are developed to address the molecular and cellular mechanisms of plant aquaporin gating and subcellular trafficking. Phosphorylation plays a central role in these two processes. These mechanisms allow aquaporin regulation in response to signaling intermediates such as cytosolic pH and calcium, and reactive oxygen species. Combined genetic and physiological approaches are now integrating this knowledge, showing that aquaporins play key roles in hydraulic regulation in roots and leaves, during drought but also in response to stimuli as diverse as flooding, nutrient availability, temperature, or light. A general hydraulic control of plant tissue expansion by aquaporins is emerging, and their role in key developmental processes (seed germination, emergence of lateral roots) has been established. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant tolerance to stresses. In conclusion, research on aquaporins delineates ever expanding fields in plant integrative biology thereby establishing their crucial role in plants.


Assuntos
Aquaporinas/metabolismo , Plantas/metabolismo , Animais , Transporte Biológico/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Estresse Fisiológico/fisiologia
9.
Plant Physiol ; 187(4): 2056-2070, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235672

RESUMO

Plant water transport and its molecular components including aquaporins are responsive, across diverse time scales, to an extremely wide array of environmental and hormonal signals. These include water deficit and abscisic acid (ABA) but also more recently identified stimuli such as peptide hormones or bacterial elicitors. The present review makes an inventory of corresponding signalling pathways. It identifies some main principles, such as the central signalling role of ROS, with a dual function of aquaporins in water and hydrogen peroxide transport, the importance of aquaporin phosphorylation that is targeted by multiple classes of protein kinases, and the emerging role of lipid signalling. More studies including systems biology approaches are now needed to comprehend how plant water transport can be adjusted in response to combined stresses.


Assuntos
Aquaporinas/metabolismo , Transporte Biológico/efeitos dos fármacos , Membrana Celular/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Água/metabolismo , Redes e Vias Metabólicas
10.
Plant Cell ; 31(2): 417-429, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30674691

RESUMO

The circadian clock regulates plant tissue hydraulics to synchronize water supply with environmental cycles and thereby optimize growth. The circadian fluctuations in aquaporin transcript abundance suggest that aquaporin water channels play a role in these processes. Here, we show that hydraulic conductivity (K ros) of Arabidopsis (Arabidopsis thaliana) rosettes displays a genuine circadian rhythmicity with a peak around midday. Combined immunological and proteomic approaches revealed that phosphorylation at two C-terminal sites (Ser280, Ser283) of PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (AtPIP2;1), a major plasma membrane aquaporin in rosettes, shows circadian oscillations and is correlated with K ros Transgenic expression of phosphodeficient and phosphomimetic forms of this aquaporin indicated that AtPIP2;1 phosphorylation is necessary but not sufficient for K ros regulation. We investigated the supporting role of 14-3-3 proteins, which are known to interact with and regulate phosphorylated proteins. Individual knockout plants for five 14-3-3 protein isoforms expressed in rosettes lacked circadian activation of K ros Two of these [GRF4 (14-3-3Phi); GRF10 (14-3-3Epsilon)] showed direct interactions with AtPIP2;1 in the plant and upon coexpression in Xenopus laevis oocytes and activated AtPIP2;1, preferentially when the latter was phosphorylated at its two C-terminal sites. We propose that this regulatory mechanism assists in the activation of phosphorylated AtPIP2;1 during circadian regulation of K ros.


Assuntos
Proteínas 14-3-3/metabolismo , Aquaporinas/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas 14-3-3/genética , Aquaporinas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fosforilação/genética , Fosforilação/fisiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Proteômica/métodos
11.
New Phytol ; 232(6): 2295-2307, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617285

RESUMO

The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform. Mutants altered in suberin deposition had enhanced root hydraulic conductivity, indicating a restrictive role for this compound in water transport. In contrast, defective CS directly increased solute leakage and indirectly reduced root hydraulic conductivity. Defective CS also led to a reduction in rosette growth, which was partly dependent on the hydro-mineral status of the plant. Ectopic suberin was shown to partially compensate for defective CS phenotypes. Altogether, our work shows that the functionality of the root apoplastic diffusion barriers greatly influences the plant physiology, and that their integrity is tightly surveyed.


Assuntos
Arabidopsis , Água , Arabidopsis/genética , Parede Celular , Lipídeos , Raízes de Plantas
12.
Plant Physiol ; 180(4): 2198-2211, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164395

RESUMO

Root water uptake is influenced by root system architecture, which is determined by root growth and branching and the hydraulics of root cells and tissues. The phytohormone abscisic acid (ABA) plays a major role in the adaptation of plants to water deficit (WD). Here we addressed at the whole-root level in Arabidopsis (Arabidopsis thaliana) the regulatory role of ABA in mechanisms that determine root hydraulic architecture. Root system architecture and root hydraulic conductivity (Lpr) were analyzed in hydroponically grown plants subjected to varying degrees of WD induced by various polyethylene glycol (PEG) concentrations. The majority of root traits investigated, including first- and second-order lateral root production and elongation and whole-root hydraulics, had a bell-shaped dependency on WD, displaying stimulation under mild WD conditions (25 g PEG L-1) and repression under more severe conditions. These traits also showed a bell-shaped dependency on exogenous ABA, and their regulation by WD was attenuated in genotypes altered in ABA biosynthesis and response. Thus, we propose that ABA acts as a coordinator and an integrator of most root responses to mild and moderate WD, whereas responses to strong WD (150 g PEG L-1) are largely ABA independent. We also found that roots exhibit different growth responses to both WD and ABA depending on their rank and age. Taken together, our results give further insights into the coordinated water acquisition strategies of roots deployed in relation to WD intensity.


Assuntos
Ácido Abscísico/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Polietilenoglicóis/metabolismo
13.
Plant Physiol ; 179(4): 1581-1593, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718348

RESUMO

Physiological acclimation of plants to an everchanging environment is governed by complex combinatorial signaling networks that perceive and transduce various abiotic and biotic stimuli. Reactive oxygen species (ROS) serve as one of the second messengers in plant responses to hyperosmotic stress. The molecular bases of ROS production and the primary cellular processes that they target were investigated in the Arabidopsis (Arabidopsis thaliana) root. Combined pharmacological and genetic approaches showed that the RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) pathway and an additional pathway involving apoplastic ascorbate and iron can account for ROS production upon hyperosmotic stimulation. The two pathways determine synergistically the rate of membrane internalization, within minutes after activation. Live superresolution microscopy revealed at single-molecule scale how ROS control specific diffusion and nano-organization of membrane cargo proteins. In particular, ROS generated by RBOHs initiated clustering of the PLASMA MEMBRANE INTRINSIC PROTEIN2;1 aquaporin and its removal from the plasma membrane. This process is contributed to by clathrin-mediated endocytosis, with a positive role of RBOH-dependent ROS, specifically under hyperosmotic stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pressão Osmótica , Espécies Reativas de Oxigênio/metabolismo , Aquaporinas/análise , Aquaporinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Endocitose , Domínios Proteicos , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 114(34): 9200-9205, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784763

RESUMO

Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the AtPIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability (Pf) of guard cell protoplasts through activation of AtPIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H2O2), revealed that both ABA and flg22 triggered an accumulation of H2O2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H2O2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced Pf and both phosphorylated AtPIP2;1 on Ser121 in vitro. Accumulation of H2O2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of AtPIP2;1. We propose a mechanism whereby phosphorylation of AtPIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H2O2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H2O2 signaling.


Assuntos
Ácido Abscísico/metabolismo , Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Estômatos de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Fosforilação , Doenças das Plantas/microbiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
15.
Plant Cell Environ ; 42(6): 1788-1801, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30767240

RESUMO

The absorption of soil water by roots allows plants to maintain their water status. At the endodermis, water transport can be affected by initial formation of a Casparian strip and further deposition of suberin lamellas and regulated by the function of aquaporins. Four Casparian strip membrane domain protein-like (CASPL; CASPL1B1, CASPL1B2, CASPL1D1, and CASPL1D2) were previously shown to interact with PIP2;1. The present work shows that CASPL1B1, CASPL1B2, and CASPL1D2 are exclusively expressed in suberized endodermal cells, suggesting a cell-specific role in suberization and/or water transport regulation. When compared with wild-type plants, and by contrast to caspl1b1*caspl1b2 double loss of function, caspl1d1*caspl1d2 double mutants showed, in some control or NaCl stress experiments and not upon abscisic acid (ABA) treatment, a weak enlargement of the continuous suberization zone. None of the mutants showed root hydraulic conductivity (Lpr ) phenotype, whether in control, NaCl, or ABA treatment conditions. The data suggest a slight negative role for CASPL1D1 and CASPL1D2 in suberization under control or salt stress conditions, with no major impact on whole root transport functions. At the molecular level, CASPL1B1 was able to physically interact with PIP2;1 and potentially could influence the regulation of aquaporins by acting on their phosphorylated form.


Assuntos
Aquaporinas/metabolismo , Transporte Biológico/fisiologia , Parede Celular/metabolismo , Ácido Abscísico/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas , Lipídeos , Proteínas de Membrana , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Psicológico , Água/metabolismo , Xenopus/genética , Xenopus/metabolismo
17.
Plant Cell ; 27(7): 1945-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26163575

RESUMO

Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121.


Assuntos
Ácido Abscísico/farmacologia , Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Quinases/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Teste de Complementação Genética , Movimento/efeitos dos fármacos , Mutação/genética , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xenopus
18.
Mol Cell Proteomics ; 15(11): 3473-3487, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27609422

RESUMO

PIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport. For that, a immuno-purification strategy coupled to protein identification and quantification by mass spectrometry (IP-MS) of PIPs was combined with data from the literature, to build thorough PIP1;2 and PIP2;1 interactomes, sharing about 400 interacting proteins. Such interactome revealed PIPs to behave as a platform for recruitment of a wide range of transport activities and provided novel insights into regulation of PIP cellular trafficking by osmotic and oxidative treatments. This work also pointed a role of lipid signaling in PIP function and enhanced our knowledge of protein kinases involved in PIP regulation. In particular we show that 2 members of the receptor-like kinase (RLK) family (RKL1 (At1g48480) and Feronia (At3g51550)) differentially modulate PIP activity through distinct molecular mechanisms. The overall work opens novel perspectives in understanding PIP regulatory mechanisms and their role in adjustment of plant water status.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Proteínas Quinases/metabolismo , Bases de Dados de Proteínas , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Raízes de Plantas/metabolismo , Mapas de Interação de Proteínas
19.
Plant Cell Physiol ; 57(4): 733-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26823528

RESUMO

The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Raízes de Plantas/fisiologia , Proteínas de Transporte de Ânions/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Água/metabolismo
20.
Plant Cell Environ ; 39(11): 2580-2587, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27497047

RESUMO

Although transpiration and aquaporins have long been identified as two key components influencing plant water status, it is only recently that their relations have been investigated in detail. The present review first examines the various facets of aquaporin function in stomatal guard cells and shows that it involves transport of water but also of other molecules such as carbon dioxide and hydrogen peroxide. At the whole plant level, changes in tissue hydraulics mediated by root and shoot aquaporins can indirectly impact plant transpiration. Recent studies also point to a feedback effect of transpiration on aquaporin function. These mechanisms may contribute to the difference between isohydric and anisohydric stomatal regulation of leaf water status. The contribution of aquaporins to transpiration control goes far beyond the issue of water transport during stomatal movements and involves emerging cellular and long-distance signalling mechanisms which ultimately act on plant growth.


Assuntos
Aquaporinas/fisiologia , Transpiração Vegetal , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Modelos Biológicos , Estômatos de Plantas/fisiologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA