Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 23, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407087

RESUMO

BACKGROUND: Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. RESULTS: Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. CONCLUSIONS: Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.


Assuntos
Cromatina , Zea mays , Cromatina/genética , Montagem e Desmontagem da Cromatina , Expressão Gênica , Genoma de Planta , Zea mays/genética
2.
Plant Physiol ; 183(4): 1453-1471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457089

RESUMO

Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.


Assuntos
Genoma de Planta/genética , Produtos Agrícolas/genética , Edição de Genes , Taxa de Mutação , Plantas Geneticamente Modificadas/genética
3.
J Org Chem ; 85(13): 8732-8739, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32482067

RESUMO

A photoredox protocol that uses a heteroleptic Cu (I) complex, [Cu(dq)(BINAP)]BF4, has been developed for the photodeprotection of benzenesulfonyl-protected N-heterocycles. A range of substrates was examined, including indazoles, indoles, pyrazoles, and benzimidazole, featuring both electron-rich and electron-deficient substituents, giving good yields of the N-heterocycle products with broad functional group tolerance. This transformation was also found to be amenable to flow reaction conditions.

4.
J Org Chem ; 83(18): 10933-10940, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30092130

RESUMO

C-H functionalization of electron-deficient heteroarenes using commercial unactivated alkyl halides through reductive quenching photoredox catalysis was developed. Mainstream approaches rely on the use of an excess of strong acids that result in regioselectivities dictated by the innate effect of the protonated heteroarene, leaving the functionalization of other carbons unexplored. We report a mild method under basic conditions that allows access to previously underexplored regioselectivities by relying on a combination of conjugate and halogen  ortho-directing effects. Overall, this methodology gives quick access to a variety of alkylated heteroarenes that will be of interest to medicinal chemistry programs.

5.
J Org Chem ; 83(3): 1551-1557, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29281285

RESUMO

The photoredox cross-coupling of aryl halides and potassium alkyl trifluoroborates is a very effective means to form Csp3-Csp2 bonds. However, this transformation is inefficient for the coupling of unactivated primary trifluoroborates. We have developed a generally useful, continuous flow Csp3-Csp2 coupling procedure for the synthesis of diverse product sets that is compatible with both trifluoroborates and silicate reagents. This universal protocol provides diversity sets from both primary and secondary coupling partners. This easily scalable procedure widens the substrate scope of the coupling reaction and is efficient for producing a greater range of analogues bearing a high sp3 fraction.

6.
PLoS Genet ; 10(5): e1004336, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784729

RESUMO

Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5' untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/fisiologia , Regiões 5' não Traduzidas , Sítios de Ligação , Proteínas Fúngicas/genética , Dosagem de Genes , Regiões Promotoras Genéticas
7.
Nature ; 464(7293): 1351-6, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20428171

RESUMO

Monozygotic or 'identical' twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4(+) lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among approximately 3.6 million single nucleotide polymorphisms (SNPs) or approximately 0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of approximately 19,000 genes in CD4(+) T cells. Only 2 to 176 differences in the methylation of approximately 2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to approximately 800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.


Assuntos
Epigênese Genética/genética , Genoma Humano/genética , Esclerose Múltipla/genética , RNA Mensageiro/genética , Gêmeos Monozigóticos/genética , Adolescente , Adulto , Desequilíbrio Alélico/genética , Mama/metabolismo , Neoplasias da Mama/genética , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Ilhas de CpG/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Predisposição Genética para Doença/genética , Haplótipos/genética , Heterozigoto , Humanos , Mutação INDEL/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Masculino , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
8.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20075913

RESUMO

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Assuntos
Genoma de Planta/genética , Genômica , Glycine max/genética , Poliploidia , Arabidopsis/genética , Cruzamento , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Genes Duplicados/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Nodulação/genética , Locos de Características Quantitativas/genética , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico/genética , Óleo de Soja/biossíntese , Sintenia/genética , Fatores de Transcrição/genética
9.
J Strength Cond Res ; 29(11): 3060-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25932980

RESUMO

The physiological demands of jockeys during competition remain largely unknown, thereby creating challenges when attempting to prescribe sport-specific nutrition and training guidelines. The purpose of this study was to evaluate the physiological demands and energy requirements of jockeys during flat racing. Oxygen uptake (V[Combining Dot Above]O2) and heart rate (HR) were assessed in 18 male trainee jockeys during a race simulation trial on a mechanical horse racing simulator for the typical time duration to cover a common flat race distance of 1,400 m. In addition, 8 male apprentice jockeys participated in a competitive race, over distances ranging from 1,200 to 1,600 m, during which HR and respiratory rate (RR) were assessed. All participants performed a maximal incremental cycle ergometer test. During the simulated race, peak V[Combining Dot Above]O2 was 42.74 ± 5.6 ml·kg·min (75 ± 11% of V[Combining Dot Above]O2peak) and below the mean ventilatory threshold (81 ± 5% of V[Combining Dot Above]O2peak) reported in the maximal incremental cycle test. Peak HR was 161 ± 16 b·min (86 ± 7% of HRpeak). Energy expenditure was estimated as 92.5 ± 18.8 kJ with an associated value of 9.4 metabolic equivalents. During the competitive race trial, peak HR reached 189 ± 5 b·min (103 ± 4% of HRpeak) and peak RR was 50 ± 7 breaths per minute. Results suggest that horse racing is a physically demanding sport, requiring jockeys to perform close to their physiological limit to be successful. These findings may provide a useful insight when developing sport-specific nutrition and training strategies to optimally equip and prepare jockeys physically for the physiological demands of horse racing.


Assuntos
Metabolismo Energético/fisiologia , Esportes/fisiologia , Adolescente , Animais , Ergometria , Frequência Cardíaca/fisiologia , Cavalos , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
10.
J Biol Chem ; 288(1): 466-79, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23161544

RESUMO

Podophyllum species are sources of (-)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (-)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (-)-matairesinol into (-)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (-)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways.


Assuntos
Plantas Medicinais/metabolismo , Podofilotoxina/biossíntese , Podophyllum/metabolismo , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Catálise , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Factuais , Regulação da Expressão Gênica de Plantas , Lignanas/química , Microssomos/metabolismo , Modelos Biológicos , Modelos Químicos , Dados de Sequência Molecular , Extratos Vegetais/química , Homologia de Sequência de Aminoácidos , Transcriptoma
11.
Syst Biol ; 62(3): 424-38, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23417680

RESUMO

Genome-scale data offer the opportunity to clarify phylogenetic relationships that are difficult to resolve with few loci, but they can also identify genomic regions with evolutionary history distinct from that of the species history. We collected whole-genome sequence data from 29 taxa in the legume genus Medicago, then aligned these sequences to the Medicago truncatula reference genome to confidently identify 87 596 variable homologous sites. We used this data set to estimate phylogenetic relationships among Medicago species, to investigate the number of sites needed to provide robust phylogenetic estimates and to identify specific genomic regions supporting topologies in conflict with the genome-wide phylogeny. Our full genomic data set resolves relationships within the genus that were previously intractable. Subsampling the data reveals considerable variation in phylogenetic signal and power in smaller subsets of the data. Even when sampling 5000 sites, no random sample of the data supports a topology identical to that of the genome-wide phylogeny. Phylogenetic relationships estimated from 500-site sliding windows revealed genome regions supporting several alternative species relationships among recently diverged taxa, consistent with the expected effects of deep coalescence or introgression in the recent history of Medicago.


Assuntos
Genoma de Planta , Medicago/genética , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Cloroplastos/genética , Evolução Molecular , Biblioteca Gênica , Medicago/citologia , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Proc Natl Acad Sci U S A ; 108(42): E864-70, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949378

RESUMO

Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.


Assuntos
Medicago truncatula/genética , DNA de Plantas/genética , Fabaceae/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Recombinação Genética
13.
Genome Biol ; 25(1): 139, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802856

RESUMO

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Assuntos
Genômica , Plantas Daninhas , Plantas Daninhas/genética , Genômica/métodos , Controle de Plantas Daninhas/métodos , Genoma de Planta , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Melhoramento Vegetal/métodos
14.
Fungal Genet Biol ; 58-59: 1-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23867711

RESUMO

Fungal species are continuously being studied to not only understand disease in humans and plants but also to identify novel antibiotics and other metabolites of industrial importance. Genetic manipulations, such as gene deletion, gene complementation, and gene over-expression, are common techniques to investigate fungal gene functions. Although advances in transformation efficiency and promoter usage have improved genetic studies, some basic steps in vector construction are still laborious and time-consuming. Gateway cloning technology solves this problem by increasing the efficiency of vector construction through the use of λ phage integrase proteins and att recombination sites. We developed a series of Gateway-compatible vectors for use in genetic studies in a range of fungal species. They contain nutritional and drug-resistance markers and can be utilized to manipulate different filamentous fungal genomes.


Assuntos
Fungos/genética , Engenharia Genética , Vetores Genéticos/genética , Plasmídeos/genética , Fungos/metabolismo , Vetores Genéticos/metabolismo , Genoma Fúngico , Plasmídeos/metabolismo , Transformação Genética
15.
Plant Physiol ; 158(4): 1745-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22319075

RESUMO

Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes.


Assuntos
Genes de Plantas/genética , Estudos de Associação Genética , Glycine max/genética , Glycine max/metabolismo , Ferro/metabolismo , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Endogamia , Repetições de Microssatélites/genética , Modelos Moleculares , Anotação de Sequência Molecular , Fenótipo , Mapeamento Físico do Cromossomo , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Commun Biol ; 6(1): 902, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667032

RESUMO

High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D2B1-P1-P5) assembly has a contig N50 ~ 7,000-fold (126 Mb) compared to the previous version and better alignment in centromeric regions. Comparative genome analyses of these three lines clearly demonstrate a high level of collinearity and multiple structural variations, including inversions greater than 1 Mb. Differential genes in improved Tift genome are enriched for serine O-acetyltransferase and glycerol-3-phosphate metabolic process which play an important role in improving the nutritional quality of seed protein and disease resistance in plants, respectively. Multiple marker-trait associations are identified for a range of agronomic traits, including grain yield through genome-wide association study. Improved genome assemblies and marker resources developed in this study provide a comprehensive framework/platform for future applications such as marker-assisted selection of mono/oligogenic traits as well as whole-genome prediction and haplotype-based breeding of complex traits.


Assuntos
Pennisetum , Pennisetum/genética , Embaralhamento de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Agricultura
17.
BMC Genomics ; 13: 568, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23107476

RESUMO

BACKGROUND: Alfalfa, a perennial, outcrossing species, is a widely planted forage legume producing highly nutritious biomass. Currently, improvement of cultivated alfalfa mainly relies on recurrent phenotypic selection. Marker assisted breeding strategies can enhance alfalfa improvement efforts, particularly if many genome-wide markers are available. Transcriptome sequencing enables efficient high-throughput discovery of single nucleotide polymorphism (SNP) markers for a complex polyploid species. RESULT: The transcriptomes of 27 alfalfa genotypes, including elite breeding genotypes, parents of mapping populations, and unimproved wild genotypes, were sequenced using an Illumina Genome Analyzer IIx. De novo assembly of quality-filtered 72-bp reads generated 25,183 contigs with a total length of 26.8 Mbp and an average length of 1,065 bp, with an average read depth of 55.9-fold for each genotype. Overall, 21,954 (87.2%) of the 25,183 contigs represented 14,878 unique protein accessions. Gene ontology (GO) analysis suggested that a broad diversity of genes was represented in the resulting sequences. The realignment of individual reads to the contigs enabled the detection of 872,384 SNPs and 31,760 InDels. High resolution melting (HRM) analysis was used to validate 91% of 192 putative SNPs identified by sequencing. Both allelic variants at about 95% of SNP sites identified among five wild, unimproved genotypes are still present in cultivated alfalfa, and all four US breeding programs also contain a high proportion of these SNPs. Thus, little evidence exists among this dataset for loss of significant DNA sequence diversity from either domestication or breeding of alfalfa. Structure analysis indicated that individuals from the subspecies falcata, the diploid subspecies caerulea, and the tetraploid subspecies sativa (cultivated tetraploid alfalfa) were clearly separated. CONCLUSION: We used transcriptome sequencing to discover large numbers of SNPs segregating in elite breeding populations of alfalfa. Little loss of SNP diversity was evident between unimproved and elite alfalfa germplasm. The EST and SNP markers generated from this study are publicly available at the Legume Information System ( http://medsa.comparative-legumes.org/) and can contribute to future alfalfa research and breeding applications.


Assuntos
Genes de Plantas , Marcadores Genéticos , Medicago sativa/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Alelos , Cruzamento , Genótipo , Mutação INDEL , Medicago sativa/classificação , Desnaturação de Ácido Nucleico , Filogenia , Ploidias , Análise de Componente Principal , Análise de Sequência de DNA
18.
Theor Appl Genet ; 124(1): 63-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21901547

RESUMO

Recent advances in whole genome sequencing (WGS) have allowed identification of genes for disease susceptibility in humans. The objective of our research was to exploit whole genome sequences of 13 rice (Oryza sativa L.) inbred lines to identify non-synonymous SNPs (nsSNPs) and candidate genes for resistance to sheath blight, a disease of worldwide significance. WGS by the Illumina GA IIx platform produced an average 5× coverage with ~700 K variants detected per line when compared to the Nipponbare reference genome. Two filtering strategies were developed to identify nsSNPs between two groups of known resistant and susceptible lines. A total of 333 nsSNPs detected in the resistant lines were absent in the susceptible group. Selected variants associated with resistance were found in 11 of 12 chromosomes. More than 200 genes with selected nsSNPs were assigned to 42 categories based on gene family/gene ontology. Several candidate genes belonged to families reported in previous studies, and three new regions with novel candidates were also identified. A subset of 24 nsSNPs detected in 23 genes was selected for further study. Individual alleles of the 24 nsSNPs were evaluated by PCR whose presence or absence corresponded to known resistant or susceptible phenotypes of nine additional lines. Sanger sequencing confirmed presence of 12 selected nsSNPs in two lines. "Resistant" nsSNP alleles were detected in two accessions of O. nivara that suggests sources for resistance occur in additional Oryza sp. Results from this study provide a foundation for future basic research and marker-assisted breeding of rice for sheath blight resistance.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Genoma de Planta , Oryza/genética , Doenças das Plantas/genética , Cromossomos de Plantas , Genótipo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Rhizoctonia/fisiologia
19.
Am J Bot ; 99(2): 383-96, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301896

RESUMO

PREMISE OF THE STUDY: RNA-seq analysis of plant transcriptomes poses unique challenges due to the highly duplicated nature of plant genomes. We address these challenges in the context of recently formed polyploid species and detail an RNA-seq experiment comparing the leaf transcriptome profile of an allopolyploid relative of soybean with the diploid species that contributed its homoeologous genomes. METHODS: RNA-seq reads were obtained from the three species and were aligned against the genome sequence of Glycine max. Transcript levels were estimated for each gene, relative contributions of polyploidy-duplicated loci (homoeologues) in the tetraploid were identified, and comparisons of transcript profiles and individual genes were used to analyze the regulation of transcript levels. KEY RESULTS: We present a novel metric developed to address issues arising from high degrees of gene space duplication and a method for dissecting a gene's measured transcript level in a polyploid species into the relative contribution of its homoeologues. We identify the gene family likely contributing to differences in photosynthetic rate between the allotetraploid and its progenitors and show that the tetraploid appears to be using the "redundant" gene copies in novel ways. CONCLUSIONS: Given the prevalence of polyploidy events in plants, we believe many of the approaches developed here to be applicable, and often necessary, in most plant RNA-seq experiments. The deep sampling provided by RNA-seq allows us to dissect the genetic underpinnings of specific phenotypes as well as examine complex interactions within polyploid genomes.


Assuntos
Diploide , Regulação da Expressão Gênica de Plantas , Análise de Sequência de RNA/métodos , Tetraploidia , Transcriptoma , Sequência de Bases , Clorofila/análise , Simulação por Computador , Genes de Plantas , Modelos Genéticos , Fenótipo , Fotossíntese/genética , Folhas de Planta/genética , RNA de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Glycine max/genética
20.
Am J Bot ; 99(2): 186-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301893

RESUMO

PREMISE OF THE STUDY: Next-generation sequencing (NGS) technologies are frequently used for resequencing and mining of single nucleotide polymorphisms (SNPs) by comparison to a reference genome. In crop species such as chickpea (Cicer arietinum) that lack a reference genome sequence, NGS-based SNP discovery is a challenge. Therefore, unlike probability-based statistical approaches for consensus calling and by comparison with a reference sequence, a coverage-based consensus calling (CbCC) approach was applied and two genotypes were compared for SNP identification. METHODS: A CbCC approach is used in this study with four commonly used short read alignment tools (Maq, Bowtie, Novoalign, and SOAP2) and 15.7 and 22.1 million Illumina reads for chickpea genotypes ICC4958 and ICC1882, together with the chickpea trancriptome assembly (CaTA). KEY RESULTS: A nonredundant set of 4543 SNPs was identified between two chickpea genotypes. Experimental validation of 224 randomly selected SNPs showed superiority of Maq among individual tools, as 50.0% of SNPs predicted by Maq were true SNPs. For combinations of two tools, greatest accuracy (55.7%) was reported for Maq and Bowtie, with a combination of Bowtie, Maq, and Novoalign identifying 61.5% true SNPs. SNP prediction accuracy generally increased with increasing reads depth. CONCLUSIONS: This study provides a benchmark comparison of tools as well as read depths for four commonly used tools for NGS SNP discovery in a crop species without a reference genome sequence. In addition, a large number of SNPs have been identified in chickpea that would be useful for molecular breeding.


Assuntos
Cicer/genética , Sequência Consenso , Produtos Agrícolas/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Variação Genética , Genótipo , Padrões de Referência , Reprodutibilidade dos Testes , Alinhamento de Sequência/métodos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA