Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 14, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34991467

RESUMO

BACKGROUND: Interferon regulatory factor-8 (IRF8) and nuclear factor-activated T cells c1 (NFATc1) are two transcription factors that have an important role in osteoclast differentiation. Thanks to ChIP-seq technology, scientists can now estimate potential genome-wide target genes of IRF8 and NFATc1. However, finding target genes that are consistently up-regulated or down-regulated across different studies is hard because it requires analysis of a large number of high-throughput expression studies from a comparable context. METHOD: We have developed a machine learning based method, called, Cohort-based TF target prediction system (cTAP) to overcome this problem. This method assumes that the pathway involving the transcription factors of interest is featured with multiple "functional groups" of marker genes pertaining to the concerned biological process. It uses two notions, Gene-Present Sufficiently (GP) and Gene-Absent Insufficiently (GA), in addition to log2 fold changes of differentially expressed genes for the prediction. Target prediction is made by applying multiple machine-learning models, which learn the patterns of GP and GA from log2 fold changes and four types of Z scores from the normalized cohort's gene expression data. The learned patterns are then associated with the putative transcription factor targets to identify genes that consistently exhibit Up/Down gene regulation patterns within the cohort. We applied this method to 11 publicly available GEO data sets related to osteoclastgenesis. RESULT: Our experiment identified a small number of Up/Down IRF8 and NFATc1 target genes as relevant to osteoclast differentiation. The machine learning models using GP and GA produced NFATc1 and IRF8 target genes different than simply using a log2 fold change alone. Our literature survey revealed that all predicted target genes have known roles in bone remodeling, specifically related to the immune system and osteoclast formation and functions, suggesting confidence and validity in our method. CONCLUSION: cTAP was motivated by recognizing that biologists tend to use Z score values present in data sets for the analysis. However, using cTAP effectively presupposes assembling a sizable cohort of gene expression data sets within a comparable context. As public gene expression data repositories grow, the need to use cohort-based analysis method like cTAP will become increasingly important.


Assuntos
Osteoclastos , Ligante RANK , Diferenciação Celular , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Aprendizado de Máquina , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Linfócitos T/metabolismo
2.
Stem Cells ; 38(4): 530-541, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31859429

RESUMO

Osteogenesis imperfecta (OI) is a genetic disorder most commonly caused by mutations associated with type I collagen, resulting in a defective collagen bone matrix. Current treatments for OI focus on pharmaceutical strategies to increase the amount of defective bone matrix, but do not address the underlying collagen defect. Introducing healthy donor stem cells that differentiate into osteoblasts producing normal collagen in OI patients has the potential to increase bone mass and correct the mutant collagen matrix. In this study, donor bone marrow stromal cells (BMSCs, also known as bone marrow mesenchymal stem cells) expressing both αSMACreERT2/Ai9 progenitor reporter and osteoblast reporter Col2.3GFP were locally transplanted into the femur of OI murine (OIM) mice. One month post-transplantation, 18% of the endosteal surface was lined by donor Col2.3GFP expressing osteoblasts indicating robust engraftment. Long-term engraftment in the marrow was observed 3 and 6 months post-transplantation. The presence of Col1a2-expressing donor cell-derived cortical bone matrix was detected in transplanted OIM femurs. Local transplantation of BMSCs increased cortical thickness (+12%), the polar moment of inertia (+14%), bone strength (+30%), and stiffness (+30%) 3 months post-transplantation. Engrafted cells expressed progenitor markers CD51 and Sca-1 up to 3 months post-transplantation. Most importantly, 3 months post-transplantation donor cells maintained the ability to differentiate into Col2.3GFP+ osteoblasts in vitro, and in vivo following secondary transplantation into OIM animals. Locally transplanted BMSCs can improve cortical structure and strength, and persist as continued source of osteoblast progenitors in the OIM mouse for at least 6 months.


Assuntos
Osso e Ossos/metabolismo , Osteogênese Imperfeita/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Animais , Osso e Ossos/citologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fenótipo , Células-Tronco/citologia
3.
J Cell Physiol ; 235(6): 5241-5255, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840817

RESUMO

Intervertebral disc degeneration (IDD) is a public health dilemma as it is associated with low back and neck pain, a frequent reason for patients to visit the physician. During IDD, nucleus pulposus (NP), the central compartment of intervertebral disc (IVD) undergo degeneration. Stem cells have been adopted as a promising biological source to regenerate the IVD and restore its function. Here, we describe a simple, two-step differentiation strategy using a cocktail of four factors (LDN, AGN, FGF, and CHIR) for efficient derivation of notochordal cells from human embryonic stem cells (hESCs). We employed a CRISPR/Cas9 based genome-editing approach to knock-in the mCherry reporter vector upstream of the 3' untranslated region of the Noto gene in H9-hESCs and monitored notochordal cell differentiation. Our data show that treatment of H9-hESCs with the above-mentioned four factors for 6 days successfully resulted in notochordal cells. These cells were characterized by morphology, immunostaining, and gene and protein expression analyses for established notochordal cell markers including FoxA2, SHH, and Brachyury. Additionally, pan-genomic high-throughput single cell RNA-sequencing revealed an efficient and robust notochordal differentiation. We further identified a key regulatory network consisting of eight candidate genes encoding transcription factors including PAX6, GDF3, FOXD3, TDGF1, and SOX5, which are considered as potential drivers of notochordal differentiation. This is the first single cell transcriptomic analysis of notochordal cells derived from hESCs. The ability to efficiently obtain notochordal cells from pluripotent stem cells provides an additional tool to develop new cell-based therapies for the treatment of IDD.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/metabolismo , Degeneração do Disco Intervertebral/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Proteínas Fetais/genética , Fatores de Transcrição Forkhead/genética , Proteínas Ligadas por GPI/genética , Redes Reguladoras de Genes/genética , Fator 3 de Diferenciação de Crescimento/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Disco Intervertebral/crescimento & desenvolvimento , Degeneração do Disco Intervertebral/patologia , Proteínas de Neoplasias/genética , Notocorda/crescimento & desenvolvimento , Notocorda/metabolismo , Núcleo Pulposo/crescimento & desenvolvimento , Núcleo Pulposo/metabolismo , Fator de Transcrição PAX6/genética , Regeneração/genética , Fatores de Transcrição SOXD/genética , Análise de Célula Única , Proteínas com Domínio T/genética
4.
Genesis ; 57(10): e23324, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271259

RESUMO

To gain a better understanding of the progression of progenitor cells in the odontoblast lineage, we have examined and characterized the expression of a series of GFP reporters during odontoblast differentiation. However, previously reported GFP reporters (pOBCol2.3-GFP, pOBCol3.6-GFP, and DMP1-GFP), similar to the endogenous proteins, are also expressed by bone-forming cells, which made it difficult to delineate the two cell types in various in vivo and in vitro studies. To overcome these difficulties we generated DSPP-Cerulean/DMP1-Cherry transgenic mice using a bacterial recombination strategy with the mouse BAC clone RP24-258g7. We have analyzed the temporal and spatial expression of both transgenes in tooth and bone in vivo and in vitro. This transgenic animal enabled us to visualize the interactions between odontoblasts and surrounding tissues including dental pulp, ameloblasts and cementoblasts. Our studies showed that DMP1-Cherry, similar to Dmp1, was expressed in functional and fully differentiated odontoblasts as well as osteoblasts, osteocytes and cementoblasts. Expression of DSPP-Cerulean transgene was limited to functional and fully differentiated odontoblasts and correlated with the expression of Dspp. This transgenic animal can help in the identification and isolation of odontoblasts at later stages of differentiation and help in better understanding of developmental disorders in dentin and odontoblasts.


Assuntos
Proteínas da Matriz Extracelular/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Odontoblastos/citologia , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Animais , Diferenciação Celular , Corantes Fluorescentes , Camundongos , Camundongos Transgênicos , Transgenes
5.
Dev Biol ; 426(1): 56-68, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28438606

RESUMO

Limb synovial joints are composed of distinct tissues, but it is unclear which progenitors produce those tissues and how articular cartilage acquires its functional postnatal organization characterized by chondrocyte columns, zone-specific cell volumes and anisotropic matrix. Using novel Gdf5CreERT2 (Gdf5-CE), Prg4-CE and Dkk3-CE mice mated to R26-Confetti or single-color reporters, we found that knee joint progenitors produced small non-migratory progenies and distinct local tissues over prenatal and postnatal time. Stereological imaging and quantification indicated that the columns present in juvenile-adult tibial articular cartilage consisted of non-daughter, partially overlapping lineage cells, likely reflecting cell rearrangement and stacking. Zone-specific increases in cell volume were major drivers of tissue thickening, while cell proliferation or death played minor roles. Second harmonic generation with 2-photon microscopy showed that the collagen matrix went from being isotropic and scattered at young stages to being anisotropic and aligned along the cell stacks in adults. Progenitor tracing at prenatal or juvenile stages showed that joint injury provoked a massive and rapid increase in synovial Prg4+ and CD44+/P75+ cells some of which filling the injury site, while neighboring chondrocytes appeared unresponsive. Our data indicate that local cell populations produce distinct joint tissues and that articular cartilage growth and zonal organization are mainly brought about by cell volume expansion and topographical cell rearrangement. Synovial Prg4+ lineage progenitors are exquisitely responsive to acute injury and may represent pioneers in joint tissue repair.


Assuntos
Cartilagem Articular , Tamanho Celular , Condrogênese/fisiologia , Traumatismos do Joelho/metabolismo , Articulação do Joelho/crescimento & desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Animais , Cartilagem Articular/citologia , Cartilagem Articular/embriologia , Cartilagem Articular/crescimento & desenvolvimento , Cartilagem Articular/lesões , Diferenciação Celular/fisiologia , Linhagem da Célula , Proliferação de Células , Condrócitos/citologia , Colágeno/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo , Articulação do Joelho/citologia , Camundongos , Camundongos Transgênicos , Membrana Sinovial/citologia
6.
Connect Tissue Res ; 57(6): 507-515, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27184388

RESUMO

Purpose of this study: To elucidate the origin of cell populations that contribute to rotator cuff healing, we developed a mouse surgical model where a full-thickness, central detachment is created in the supraspinatus. MATERIALS AND METHODS: Three different inducible Cre transgenic mice with Ai9-tdTomato reporter expression (PRG4-9, αSMA-9, and AGC-9) were used to label different cell populations in the shoulder. The defect was created surgically in the supraspinatus. The mice were injected with tamoxifen at surgery to label the cells and sacrificed at 1, 2, and 5 weeks postoperatively. Frozen sections were fluorescently imaged then stained with Toluidine Blue and re-imaged. RESULTS: Three notable changes were apparent postoperatively. (1) A long thin layer of tissue formed on the bursal side overlying the supraspinatus tendon. (2) The tendon proximal to the defect initially became hypercellular and disorganized. (3) The distal stump at the insertion underwent minimal remodeling. In the uninjured shoulder, tdTomato expression was seen in the tendon midsubstance and paratenon cell on the bursal side in PRG4-9, in paratenon, blood vessels, and periosteum of acromion in SMA-9, and in articular cartilage, unmineralized fibrocartilage of supraspinatus enthesis, and acromioclavicular joint in AGC-9 mice. In the injured PRG4-9 and SMA-9 mice, the healing tissues contained an abundant number of tdTomato+ cells, while minimal contribution of tdTomato+ cells was seen in AGC-9 mice. CONCLUSIONS: The study supports the importance of the bursal side of the tendon to rotator cuff healing and PRG4 and αSMA may be markers for these progenitor cells.


Assuntos
Lesões do Manguito Rotador/patologia , Manguito Rotador/patologia , Cicatrização , Animais , Músculo Deltoide/patologia , Modelos Animais de Doenças , Genes Reporter , Integrases/metabolismo , Camundongos Transgênicos , Luxação do Ombro/patologia , Lesões do Ombro , Articulação do Ombro/patologia
7.
Genesis ; 53(3-4): 294-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25809957

RESUMO

With the establishment of methods that provide evidence for the generation of chondrocyte and osteoblast cell types from ESCs, there is a need for reagents that will enable their further characterization. Here we report on the derivation of chondrocyte and osteoblast reporter ESCs from previously generated and characterized transgenic mouse lines, Collagen type 2 alpha 1(Col2a1)-ECFP, Bone Sialoprotein (BSP)-Topaz, and BSP-Topaz/Dentin Matrix Protein 1 (DMP1)-Cherry dual reporter mice. Col2a1-ECFP is highly expressed in chondrocytes, while BSP-Topaz and DMP1-Cherry are highly expressed in osteoblasts and osteocytes, respectively. These new skeletal reporter mouse ESC lines will serve as valuable reagents to investigate the functionality of ESC derived chondrocyte and osteoblast cell types.


Assuntos
Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Calicreínas/metabolismo , Osteoblastos/metabolismo , Animais , Células Cultivadas , Condrócitos/citologia , Colágeno Tipo II/genética , Células-Tronco Embrionárias/citologia , Proteínas da Matriz Extracelular/genética , Feminino , Proteínas de Fluorescência Verde/genética , Processamento de Imagem Assistida por Computador , Calicreínas/genética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Osteoblastos/citologia , Osteócitos/citologia , Osteócitos/metabolismo , Teratoma/metabolismo , Teratoma/patologia
8.
Dev Biol ; 395(2): 255-67, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25238962

RESUMO

Limb development requires the coordinated growth of several tissues and structures including long bones, joints and tendons, but the underlying mechanisms are not wholly clear. Recently, we identified a small drug-like molecule - we named Kartogenin (KGN) - that greatly stimulates chondrogenesis in marrow-derived mesenchymal stem cells (MSCs) and enhances cartilage repair in mouse osteoarthritis (OA) models. To determine whether limb developmental processes are regulated by KGN, we tested its activity on committed preskeletal mesenchymal cells from mouse embryo limb buds and whole limb explants. KGN did stimulate cartilage nodule formation and more strikingly, boosted digit cartilaginous anlaga elongation, synovial joint formation and interzone compaction, tendon maturation as monitored by ScxGFP, and interdigit invagination. To identify mechanisms, we carried out gene expression analyses and found that several genes, including those encoding key signaling proteins, were up-regulated by KGN. Amongst highly up-regulated genes were those encoding hedgehog and TGFß superfamily members, particularly TFGß1. The former response was verified by increases in Gli1-LacZ activity and Gli1 mRNA expression. Exogenous TGFß1 stimulated cartilage nodule formation to levels similar to KGN, and KGN and TGFß1 both greatly enhanced expression of lubricin/Prg4 in articular superficial zone cells. KGN also strongly increased the cellular levels of phospho-Smads that mediate canonical TGFß and BMP signaling. Thus, limb development is potently and harmoniously stimulated by KGN. The growth effects of KGN appear to result from its ability to boost several key signaling pathways and in particular TGFß signaling, working in addition to and/or in concert with the filamin A/CBFß/RUNX1 pathway we identified previously to orchestrate overall limb development. KGN may thus represent a very powerful tool not only for OA therapy, but also limb regeneration and tissue repair strategies.


Assuntos
Anilidas/farmacologia , Condrogênese/efeitos dos fármacos , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Cápsula Articular/embriologia , Mesoderma/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Animais , Primers do DNA/genética , Processamento de Imagem Assistida por Computador , Immunoblotting , Hibridização In Situ , Cápsula Articular/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Confocal , Proteoglicanas/metabolismo , Regeneração/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteína GLI1 em Dedos de Zinco , Proteína Vermelha Fluorescente
9.
Nat Genet ; 37(9): 945-52, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16056226

RESUMO

Human and mouse genetic and in vitro evidence has shown that canonical Wnt signaling promotes bone formation, but we found that mice lacking the canonical Wnt antagonist Dickkopf2 (Dkk2) were osteopenic. We reaffirmed the finding that canonical Wnt signaling stimulates osteogenesis, including the differentiation from preosteoblasts to osteoblasts, in cultured osteoblast differentiation models, but we also found that canonical Wnts upregulated the expression of Dkk2 in osteoblasts. Although exogenous overexpression of Dkk before the expression of endogenous canonical Wnt (Wnt7b) suppressed osteogenesis in cultures, its expression after peak Wnt7b expression induced a phenotype resembling terminal osteoblast differentiation leading to mineralization. In addition, osteoblasts from Dkk2-null mice were poorly mineralized upon osteogenic induction in cultures, and Dkk2 deficiency led to attenuation of the expression of osteogenic markers, which could be partially reversed by exogenous expression of Dkk2. Taken together with the finding that Dkk2-null mice have increased numbers of osteoids, these data indicate that Dkk2 has a role in late stages of osteoblast differentiation into mineralized matrices. Because expression of another Wnt antagonist, FRP3, differs from Dkk2 expression in rescuing Dkk2 deficiency and regulating osteoblast differentiation, the effects of Dkk2 on terminal osteoblast differentiation may not be entirely mediated by its Wnt signaling antagonistic activity.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Osteoblastos/citologia , Osteogênese/fisiologia , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto , Feminino , Glicoproteínas/metabolismo , Corpos de Inclusão , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Osteoblastos/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt
10.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948860

RESUMO

Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO). AHO is caused by heterozygous inactivation of GNAS, the gene that encodes the α-stimulatory subunit (Gαs) of G proteins. Previously, we had shown using our laboratory's AHO mouse model that SCOs develop around hair follicles (HFs). Here we show that SCO formation occurs due to inappropriate expansion and differentiation of HF-resident stem cells into osteoblasts. We also show in AHO patients and mice that Secreted Frizzled Related Protein 2 (SFRP2) expression is upregulated in regions of SCO formation and that elimination of Sfrp2 in male AHO mice exacerbates SCO development. These studies provide key insights into the cellular and molecular mechanisms contributing to SCO development and have implications for potential therapeutic modalities not only for AHO patients but also for patients suffering from HOs with other etiologies.

11.
bioRxiv ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38370845

RESUMO

Single cell RNA sequencing technology has been dramatically changing how gene expression studies are performed. However, its use has been limited to identifying subtypes of cells by comparing cells' gene expression levels in an unbiased manner to produce a 2D plot (e.g., UMAP/tSNE). We developed a new method of placing cells in 2D space. This system, called vSPACE, shows a virtual spatial representation of scRNAseq data obtained from human articular cartilage by emulating the concept of spatial transcriptomics technology, but virtually. This virtual 2D plot presentation of human articular cartage cells generates several zonal distribution patterns, in one or multiple genes at a time, reveling patterns that scientists can appreciate as imputed spatial distribution patterns along the zonal axis. The discovered patterns are explainable and remarkably consistent across all six healthy doners despite their respectively different clinical variables (age and sex), suggesting the confidence of the discovered patterns.

12.
Genesis ; 51(4): 246-58, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23180553

RESUMO

Osterix is a zinc finger containing transcription factor, which functions as a key regulator of osteoblast differentiation. To better understand the temporal and spatial expression of Osterix during embryonic development and in the adult skeleton, we generated Osterix-Cherry reporter mice. Bacterial recombination techniques were employed to engineer a transgenic construct, which consisted of a ∼39 kb DNA fragment encompassing the Osterix/Sp7 gene, but excluding adjacent gene sequences. Osterix reporter expression was characterized at embryonic, neonatal, and adult ages both by itself and in the context of a cross with Bone Sialoprotein (BSP)-Topaz reporter mice. Relative to Osterix, BSP is a more mature marker of osteoblast differentiation. In agreement with osteoblast lineage maturation, Osterix reporter expression preceded BSP reporter expression during embryonic development and spatially appeared in a much broader cell population. Strong Osterix reporter expression was observed in mature osteoblasts and osteocytes. However, weaker Osterix-Cherry positive cells were also observed in the bone marrow, possibly identifying an early osteoprogenitor cell population. Evaluation of Osterix reporter expression in male femur tissue sections from 10 days to 12 weeks of age revealed persistent expression in cells of the osteoblast lineage and a surprising increase in maturing chondrocytes of the growth plate. Also, Osterix reporter expression was transiently detected in the kidney after birth.


Assuntos
Proteínas Luminescentes/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Efeito Fundador , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fator de Transcrição Sp7 , Fatores de Transcrição/metabolismo , Proteína Vermelha Fluorescente
13.
Stem Cells ; 30(2): 187-96, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083974

RESUMO

Adult mesenchymal progenitor cells have enormous potential for use in regenerative medicine. However, the true identity of the progenitors in vivo and their progeny has not been precisely defined. We hypothesize that cells expressing a smooth muscle α-actin promoter (αSMA)-directed Cre transgene represent mesenchymal progenitors of adult bone tissue. By combining complementary colors in combination with transgenes activating at mature stages of the lineage, we characterized the phenotype and confirmed the ability of isolated αSMA(+) cells to progress from a progenitor to fully mature state. In vivo lineage tracing experiments using a new bone formation model confirmed the osteogenic phenotype of αSMA(+) cells. In vitro analysis of the in vivo-labeled SMA9(+) cells supported their differentiation potential into mesenchymal lineages. Using a fracture-healing model, αSMA9(+) cells served as a pool of fibrocartilage and skeletal progenitors. Confirmation of the transition of αSMA9(+) progenitor cells to mature osteoblasts during fracture healing was assessed by activation of bone-specific Col2.3emd transgene. Our findings provide a novel in vivo identification of defined population of mesenchymal progenitor cells with active role in bone remodeling and regeneration.


Assuntos
Linhagem da Célula , Células-Tronco Mesenquimais/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Células da Medula Óssea/metabolismo , Regeneração Óssea , Remodelação Óssea , Diferenciação Celular , Feminino , Consolidação da Fratura , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Tíbia/patologia
14.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014057

RESUMO

Cell-cell communication is crucial in maintaining cellular homeostasis, cell survival and various regulatory relationships among interacting cells. Thanks to recent advances of spatial transcriptomics technologies, we can now explore if and how cells' proximal information available from spatial transcriptomics datasets can be used to infer cell-cell communication. Here we present a cell-cell communication inference framework, called CGCom, which uses a graph neural network (GNN) to learn communication patterns among interacting cells by combining single-cell spatial transcriptomic datasets with publicly available ligand-receptor information and the molecular regulatory information down-stream of the ligand-receptor signaling. To evaluate the performance of CGCom, we applied it to mouse embryo seqFISH datasets. Our results demonstrate that CGCom can not only accurately infer cell communication between individual cell pairs but also generalize its learning to predict communication between different cell types. We compared the performance of CGCom with two existing methods, CellChat and CellPhoneDB, and our comparative study revealed both common and unique communication patterns from the three approaches. Commonly found communication patterns include three sets of ligand-receptor communication relationships, one between surface ectoderm cells and spinal cord cells, one between gut tube cells and endothelium, and one between neural crest and endothelium, all of which have already been reported in the literature thus offering credibility of all three methods. However, we hypothesize that CGCom is superior in reducing false positives thanks to its use of cell proximal information and its learning between specific cell pairs rather than between cell types. CGCom is a GNN-based solution that can take advantage of spatially resolved single-cell transcriptomic data in predicting cell-cell communication with a higher accuracy.

15.
JBMR Plus ; 6(1): e10570, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079678

RESUMO

Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivation of GNAS, a complex locus that encodes the alpha-stimulatory subunit of heterotrimeric G proteins (Gsα) in addition to NESP55 and XLαs due to alternative first exons. AHO skeletal manifestations include brachydactyly, brachymetacarpia, compromised adult stature, and subcutaneous ossifications. AHO patients with maternally-inherited GNAS mutations develop pseudohypoparathyroidism type 1A (PHP1A) with resistance to multiple hormones that mediate their actions through G protein-coupled receptors (GPCRs) requiring Gsα (eg, parathyroid hormone [PTH], thyroid-stimulating hormone [TSH], growth hormone-releasing hormone [GHRH], calcitonin) and severe obesity. Paternally-inherited GNAS mutations cause pseudopseudohypoparathyroidism (PPHP), in which patients have AHO skeletal features but do not develop hormonal resistance or marked obesity. These differences between PHP1A and PPHP are caused by tissue-specific reduction of paternal Gsα expression. Previous reports in mice have shown loss of Gsα causes osteopenia due to impaired osteoblast number and function and suggest that AHO patients could display evidence of reduced bone mineral density (BMD). However, we previously demonstrated PHP1A patients display normal-increased BMD measurements without any correlation to body mass index or serum PTH. Due to these observed differences between PHP1A and PPHP, we utilized our laboratory's AHO mouse model to address whether Gsα heterozygous inactivation differentially affects bone remodeling based on the parental inheritance of the mutation. We identified fundamental distinctions in bone remodeling between mice with paternally-inherited (GnasE1+/-p) versus maternally-inherited (GnasE1+/-m) mutations, and these findings were observed predominantly in female mice. Specifically, GnasE1+/-p mice exhibited reduced bone parameters due to impaired bone formation and enhanced bone resorption. GnasE1+/-m mice, however, displayed enhanced bone parameters due to both increased osteoblast activity and normal bone resorption. These in vivo distinctions in bone remodeling between GnasE1+/-p and GnasE1+/-m mice could potentially be related to changes in the bone microenvironment driven by calcitonin-resistance within GnasE1+/-m osteoclasts. Further studies are warranted to assess how Gsα influences osteoblast-osteoclast coupling. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
Front Cell Dev Biol ; 10: 1006087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313563

RESUMO

A transgenic mouse approach using bacterial artificial chromosomes (BAC) was used to identify regulatory regions that direct Müllerian duct expression for Amhr2 and Osterix (Osx, also known as Sp7). Amhr2 encodes the receptor that mediates anti-Müllerian hormone (AMH) signaling for Müllerian duct regression in male embryos. Amhr2 is expressed in the Müllerian duct mesenchyme of both male and female embryos. A ∼147-kb BAC clone containing the Amhr2 locus was used to generate transgenic mice. The transgene was able to rescue the block in Müllerian duct regression of Amhr2-null males, suggesting that the BAC clone contains regulatory sequences active in male embryos. Osx is expressed in the developing skeleton of male and female embryos but is also an AMH-induced gene that is expressed in the Müllerian duct mesenchyme exclusively in male embryos. Osx-Cre transgenic mice were previously generated using a ∼204-kb BAC clone. Crosses of Osx-Cre mice to Cre-dependent lacZ reporter mice resulted in reporter expression in the developing skeleton and in the Müllerian duct mesenchyme of male but not female embryos. Osx-Cherry transgenic mice were previously generated using a 39-kb genomic region surrounding the Osx locus. Osx-Cherry embryos expressed red fluorescence in the developing skeleton and Müllerian duct mesenchyme of male but not female embryos. In addition, female Osx-Cherry embryos ectopically expressing human AMH from an Mt1-AMH transgene activated red fluorescence in the Müllerian duct mesenchyme. These results suggest that the 39-kb region used to generate Osx-Cherry contains male-specific Müllerian duct mesenchyme regulatory sequences that are responsive to AMH signaling. These BAC transgenic mouse approaches identify two distinct regions that direct Müllerian duct mesenchyme expression and contribute fundamental knowledge to define a gene regulatory network for sex differentiation.

17.
Genesis ; 49(5): 410-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21328521

RESUMO

We report here on the generation of a new fluorescent protein reporter transgenic mouse line, Col10a1-mCherry, which can be used as a tool to study chondrocyte biology and pathology. Collagen, Type X, alpha 1 (Col10a1) is highly expressed in hypertrophic chondrocytes and commonly used as a gene marker for this cell population. The Col10a1-mCherry reporter line was generated using a bacterial recombination strategy with the mouse BAC clone RP23-192A7. To aid in the characterization of this animal model, we intercrossed Col10a1-mCherry mice with Collagen, Type II, alpha 1 (Col2a1) enhanced cyan fluorescent protein (ECFP) reporter mice and characterized the expression of both chondrocyte reporters during embryonic skeletal development from days E10.5 to E17.5. Additionally, at postnatal day 0, Col10a1-mCherry reporter expression was compared to endogenous Col10a1 mRNA expression in long bones and revealed that mCherry fluorescence extended past the Col10a1 expression domain. However, in situ hybridization for mCherry was consistent with the zone of Col10a1 mRNA expression, indicating that the persistent detection of mCherry fluorescence was a result of the long protein half life of mCherry in conjunction with a very rapid phase of skeletal growth and not due to aberrant transcriptional regulation. Taking advantage of the continued fluorescence of hypertrophic chondrocytes at the chondro-osseus junction, we intercrossed Col10a1-mCherry mice with two different Collagen, Type 1, alpha 1, (Col1a1) osteoblast reporter mice, pOBCol3.6-Topaz and pOBCol2.3-Emerald to investigate the possibility that hypertrophic chondrocytes transdifferentiate into osteoblasts. Evaluation of long bones at birth suggests that residual hypertrophic chondrocytes and osteoblasts in the trabecular zone exist as two completely distinct cell populations. genesis 49:410-418, 2011.


Assuntos
Condrócitos/metabolismo , Colágeno Tipo X/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Animais Recém-Nascidos , Cartilagem/embriologia , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Condrócitos/citologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo X/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/genética , Fatores de Tempo , Proteína Vermelha Fluorescente
18.
Bone ; 144: 115688, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33065355

RESUMO

The IMPC/KOMP program provides the opportunity to screen mice harboring well defined gene-inactivation mutations in a uniform genetic background. The program performs a global tissue phenotyping survey that includes skeletal x-rays and bone density measurements. Because of the relative insensitivity of the two screening tests for detecting variance in bone architecture, we initiated a secondary screen based on µCT and a cryohistolomorphological workflow that was performed on the femur and vertebral compartments on 220 randomly selected knockouts (KOs) and 36 control bone samples over a 2 1/2 year collection period provided by one of the production/phenotyping centers. The performance of the screening protocol was designed to balance throughput and cost versus sensitivity and informativeness such that the output would be of value to the skeletal biology community. Here we report the reliability of this screening protocol to establish criteria for control skeletal variance at the architectural, dynamic and cellular histomorphometric level. Unexpected properties of the control population include unusually high variance in BV/TV in male femurs and greater bone formation and bone turnover rates in the female femur and vertebral trabeculae bone compartments. However, the manner for maintaining bone formation differed between these two bone sites. The vertebral compartment relies on maintaining a greater number of bone forming surfaces while the femoral compartment utilized more matrix production per cell. The comparison of the architectural properties obtained by µCT and histomorphology revealed significant differences in values for BV/TV, Tb.Th and Tb.N which is attributable to sampling density of the two methods. However, as a screening tool, expressing the ratio of KO to the control line as obtained by either method was remarkably similar. It identified KOs with significant variance which led to a more detailed histological analysis. Our findings are exemplified by the Efna4 KO, in which a high BV/TV was identified by µCT and confirmed by histomorphometry in the femur but not in the vertebral compartment. Dynamic labeling showed a marked increase in BFR which was attributable to increased labeling surfaces. Cellular analysis confirmed partitioning of osteoblast to labeling surfaces and a marked decrease in osteoclastic activity on both labeling and quiescent surfaces. This pattern of increased bone modeling would not be expected based on prior studies of the Ephrin-Ephrin receptor signaling pathways between osteoblasts and osteoclasts. Overall, our findings underscore why unbiased screening is needed because it can reveal unknown or unanticipated genes that impact skeletal variation.


Assuntos
Densidade Óssea , Fêmur , Animais , Osso e Ossos/diagnóstico por imagem , Computadores , Feminino , Fêmur/diagnóstico por imagem , Masculino , Camundongos , Reprodutibilidade dos Testes
19.
Bone ; 135: 115315, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32165349

RESUMO

Cherubism is a rare genetic disorder caused primarily by mutations in SH3BP2 resulting in excessive bone resorption and fibrous tissue overgrowth in the lower portions of the face. Bone marrow derived cell cultures derived from a murine model of cherubism display poor osteogenesis and spontaneous osteoclast formation. To develop a deeper understanding for the potential underlying mechanisms contributing to these phenotypes in mice, we compared global gene expression changes in hematopoietic and mesenchymal cell populations between cherubism and wild type mice. In the hematopoietic population, not surprisingly, upregulated genes were significantly enriched for functions related to osteoclastogenesis. However, these upregulated genes were also significantly enriched for functions associated with inflammation including arachidonic acid/prostaglandin signaling, regulators of coagulation and autoinflammation, extracellular matrix remodeling, and chemokine expression. In the mesenchymal population, we observed down regulation of osteoblast and adventitial reticular cell marker genes. Regulators of BMP and Wnt pathway associated genes showed numerous changes in gene expression, likely implicating the down regulation of BMP signaling and possibly the activation of certain Wnt pathways. Analyses of the cherubism derived mesenchymal population also revealed interesting changes in gene expression related to inflammation including the expression of distinct granzymes, chemokines, and sulfotransferases. These studies reveal complex changes in gene expression elicited from a cherubic mutation in Sh3bp2 that are informative to the mechanisms responding to inflammatory stimuli and repressing osteogenesis. The outcomes of this work are likely to have relevance not only to cherubism, but other inflammatory conditions impacting the skeleton.


Assuntos
Querubismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Querubismo/genética , Modelos Animais de Doenças , Expressão Gênica , Camundongos , Osteoclastos/metabolismo
20.
BMC Biotechnol ; 9: 20, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19284652

RESUMO

BACKGROUND: Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. RESULTS: We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. CONCLUSION: The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genes Reporter , Mutagênese Insercional/métodos , Animais , Clonagem Molecular , DNA/genética , Dosagem de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Camundongos Transgênicos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA