Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553935

RESUMO

Increasing hurricane frequency and intensity with climate change is likely to affect soil organic carbon (C) stocks in tropical forests. We examined the cycling of C between soil pools and with depth at the Luquillo Experimental Forest in Puerto Rico in soils over a 30-year period that spanned repeated hurricanes. We used a nonlinear matrix model of soil C pools and fluxes ("soilR") and constrained the parameters with soil and litter survey data. Soil chemistry and stable and radiocarbon isotopes were measured from three soil depths across a topographic gradient in 1988 and 2018. Our results suggest that pulses and subsequent reduction of inputs caused by severe hurricanes in 1989, 1998, and two in 2017 led to faster mean transit times of soil C in 0-10 cm and 35-60 cm depths relative to a modeled control soil with constant inputs over the 30-year period. Between 1988 and 2018, the occluded C stock increased and δ13C in all pools decreased, while changes in particulate and mineral-associated C were undetectable. The differences between 1988 and 2018 suggest that hurricane disturbance results in a dilution of the occluded light C pool with an influx of young, debris-deposited C, and possible microbial scavenging of old and young C in the particulate and mineral-associated pools. These effects led to a younger total soil C pool with faster mean transit times. Our results suggest that the increasing frequency of intense hurricanes will speed up rates of C cycling in tropical forests, making soil C more sensitive to future tropical forest stressors.


Assuntos
Tempestades Ciclônicas , Solo , Carbono , Florestas , Minerais
2.
Glob Chang Biol ; 29(5): 1239-1247, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36268673

RESUMO

Changes in soil organic carbon (SOC) storage have the potential to affect global climate; hence identifying environments with a high capacity to gain or lose SOC is of broad interest. Many cross-site studies have found that SOC-poor soils tend to gain or retain carbon more readily than SOC-rich soils. While this pattern may partly reflect reality, here we argue that it can also be created by a pair of statistical artifacts. First, soils that appear SOC-poor purely due to random variation will tend to yield more moderate SOC estimates upon resampling and hence will appear to accrue or retain more SOC than SOC-rich soils. This phenomenon is an example of regression to the mean. Second, normalized metrics of SOC change-such as relative rates and response ratios-will by definition show larger changes in SOC at lower initial SOC levels, even when the absolute change in SOC does not depend on initial SOC. These two artifacts create an exaggerated impression that initial SOC stocks are a major control on SOC dynamics. To address this problem, we recommend applying statistical corrections to eliminate the effect of regression to the mean, and avoiding normalized metrics when testing relationships between SOC change and initial SOC. Careful consideration of these issues in future cross-site studies will support clearer scientific inference that can better inform environmental management.


Assuntos
Carbono , Solo , Artefatos , Clima
3.
Ecol Appl ; 32(8): e2705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35808918

RESUMO

Composted manure and green waste amendments have been shown to increase net carbon (C) sequestration in rangeland soils and have been proposed as a means to help lower atmospheric CO2 concentrations. However, the effect of climate change on soil organic C (SOC) stocks and greenhouse gas emissions in rangelands is not well understood, and the viability of climate change mitigation strategies under future conditions is even less certain. We used a process-based biogeochemical model (DayCent) at a daily time step to explore the long-term effects of potential future climate changes on C and greenhouse gas dynamics in annual grassland ecosystems. We then used the model to explore how the same ecosystems might respond to climate change following compost amendments to soils and determined the long-term viability of net SOC sequestration under changing climates. We simulated net primary productivity (NPP), SOC, and greenhouse gas fluxes across seven California annual grasslands with and without compost amendments. We drove the DayCent simulations with field data and with site-specific daily climate data from two Earth system models (CanESM2 and HadGEM-ES) and two representative concentration pathways (RCP4.5 and RCP8.5) through 2100. NPP and SOC stocks in unamended and amended ecosystems were surprisingly insensitive to projected climate changes. A one-time amendment of compost to rangeland acted as a slow-release organic fertilizer and increased NPP by up to 390-814 kg C ha-1  year-1 across sites. The amendment effect on NPP was not sensitive to Earth system model or emissions scenario and endured through the end of the century. Net SOC sequestration amounted to 1.96 ± 0.02 Mg C ha-1 relative to unamended soils at the maximum amendment effect. Averaged across sites and scenarios, SOC sequestration peaked 22 ± 1 years after amendment and declined but remained positive throughout the century. Though compost stimulated nitrous oxide (N2 O) emissions, the cumulative net emissions (in CO2 equivalents) due to compost were far less than the amount of SOC sequestered. Compost amendments resulted in a net climate benefit of 69.6 ± 0.5 Tg CO2 e 20 ± 1 years after amendment if applied to similar ecosystems across the state, amounting to 39% of California's rangeland. These results suggest that the biogeochemical benefits of a single amendment of compost to rangelands in California are insensitive to climate change and could contribute to decadal-scale climate change mitigation goals alongside emissions reductions.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Ecossistema , Pradaria , Dióxido de Carbono , Solo , Carbono
4.
Sci Adv ; 4(8): eaaq0932, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30167456

RESUMO

Removal of atmospheric carbon dioxide (CO2) combined with emission reduction is necessary to keep climate warming below the internationally agreed upon 2°C target. Soil organic carbon sequestration through agricultural management has been proposed as a means to lower atmospheric CO2 concentration, but the magnitude needed to meaningfully lower temperature is unknown. We show that sequestration of 0.68 Pg C year-1 for 85 years could lower global temperature by 0.1°C in 2100 when combined with a low emission trajectory [Representative Concentration Pathway (RCP) 2.6]. This value is potentially achievable using existing agricultural management approaches, without decreasing land area for food production. Existing agricultural mitigation approaches could lower global temperature by up to 0.26°C under RCP 2.6 or as much as 25% of remaining warming to 2°C. This declines to 0.14°C under RCP 8.5. Results were sensitive to assumptions regarding the duration of carbon sequestration rates, which is poorly constrained by data. Results provide a framework for the potential role of agricultural soil organic carbon sequestration in climate change mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA